<div class="csl-bib-body">
<div class="csl-entry">Hartarsky, I., & Lichev, L. (2023). Brownian snails with removal die out in one dimension. <i>Electronic Communications in Probability</i>, <i>28</i>, 1–8. https://doi.org/10.1214/23-ECP551</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/189990
-
dc.description.abstract
Brownian snails with removal is a spatial epidemic model defined as follows. Initially, a homogeneous Poisson process of susceptible particles on Rd with intensity λ>0 is deposited and a single infected one is added at the origin. Each particle performs an independent standard Brownian motion. Each susceptible particle is infected immediately when it is within distance 1 from an infected particle. Each infected particle is removed at rate α>0, and removed particles remain such forever. Answering a question of Grimmett and Li, we prove that in one dimension, for all values of λ and α, the infection almost surely dies out.
en
dc.description.sponsorship
FWF Fonds zur Förderung der wissenschaftlichen Forschung (FWF)
-
dc.language.iso
en
-
dc.publisher
INST MATHEMATICAL STATISTICS-IMS
-
dc.relation.ispartof
Electronic Communications in Probability
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Brownian motion
en
dc.subject
extinction
en
dc.subject
SIR model
en
dc.title
Brownian snails with removal die out in one dimension
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.contributor.affiliation
Bulgarian Academy of Sciences, Bulgaria
-
dc.description.startpage
1
-
dc.description.endpage
8
-
dc.relation.grantno
P 35428-N
-
dc.type.category
Original Research Article
-
tuw.container.volume
28
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Stochastische Oberflächen: Wachstum und Universalität