<div class="csl-bib-body">
<div class="csl-entry">Breit, A., Waltersdorfer, L., Ekaputra, F. J., Karampatakis, S., Miksa, T., & Käfer, G. (2023). Combining Semantic Web and Machine Learning for Auditable Legal Key Element Extraction. In <i>The Semantic Web : 20th International Conference, ESWC 2023, Hersonissos, Crete, Greece, May 28–June 1, 2023, Proceedings</i> (pp. 609–624). https://doi.org/10.1007/978-3-031-33455-9_36</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190013
-
dc.description.abstract
Based on a real world use case, we developed and evaluated a hybrid AI system that aims to extract key elements from legal permits by combining methods from the Semantic Web and Machine Learning. Specifically, we modelled the available background knowledge in a custom Knowledge Graph, which we exploited together with the usage of different language- and text-embedding-models in order to extract different information from official Austrian permits, including the Issuing Authority, the Operator of the facility in question, the Reference Number, and the Issuing Date. Additionally, we implemented mechanisms to capture automatically auditable traces of the system to ensure the transparency of the processes. Our quantitative evaluation showed overall promising results, while the in-depth qualitative analysis revealed concrete error types, providing guidance on how to improve the current prototype.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
auditability
en
dc.subject
information extraction
en
dc.subject
legal permits
en
dc.subject
machine learning
en
dc.subject
semantic web
en
dc.title
Combining Semantic Web and Machine Learning for Auditable Legal Key Element Extraction
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Semantic Web Company (Austria), Austria
-
dc.contributor.affiliation
Semantic Web Company (Austria), Austria
-
dc.relation.isbn
978-3-031-33455-9
-
dc.description.startpage
609
-
dc.description.endpage
624
-
dc.relation.grantno
877389
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
The Semantic Web : 20th International Conference, ESWC 2023, Hersonissos, Crete, Greece, May 28–June 1, 2023, Proceedings
-
tuw.container.volume
13870
-
tuw.peerreviewed
true
-
tuw.project.title
Ontology-Based ARtificial Intelligence in the Environmental Sector
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publisher.doi
10.1007/978-3-031-33455-9_36
-
dc.description.numberOfPages
16
-
tuw.author.orcid
0000-0001-7436-7620
-
tuw.author.orcid
0000-0002-4929-7875
-
tuw.event.name
20th International Conference, ESWC 2023
en
tuw.event.startdate
28-05-2023
-
tuw.event.enddate
01-06-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Crete
-
tuw.event.country
GR
-
tuw.event.presenter
Breit, Anna
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
none
-
crisitem.author.dept
Semantic Web Company (Austria)
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
Semantic Web Company (Austria)
-
crisitem.author.dept
E058-06 - Fachbereich Zentrum für Forschungsdatenmanagement
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0003-4569-2496
-
crisitem.author.orcid
0000-0001-7436-7620
-
crisitem.author.orcid
0000-0002-4929-7875
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E058 - Forschungs-, Technologie- und Innovationssupport
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH