<div class="csl-bib-body">
<div class="csl-entry">Daniele, A., Campari, T., Malhotra, S., & Serafini, L. (2023). Deep Symbolic Learning: Discovering Symbols and Rules from Perceptions. In <i>Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)</i> (pp. 3597–3605). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2023/400</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190017
-
dc.description.abstract
Neuro-Symbolic (NeSy) integration combines symbolic reasoning with Neural Networks (NNs) for tasks requiring perception and reasoning. Most NeSy systems rely on continuous relaxation of logical knowledge, and no discrete decisions are made within the model pipeline. Furthermore, these methods assume that the symbolic rules are given. In this paper, we propose Deep Symboilic Learning (DSL), a NeSy system that learns NeSy-functions, i.e., the composition of a (set of) perception functions which map continuous data to discrete symbols, and a symbolic function over the set of symbols. DSL simultaneously learns the perception and symbolic functions while being trained only on their composition (NeSy-function). The key novelty of DSL is that it can create internal (interpretable) symbolic representations and map them to perception inputs within a differentiable NN learning pipeline. The created symbols are automatically selected to generate symbolic functions that best explain the data. We provide experimental analysis to substantiate the efficacy of DSL in simultaneously learning perception and symbolic functions.
en
dc.language.iso
en
-
dc.subject
Machine Learning
en
dc.subject
Neural Networks
en
dc.subject
Neurosymbolic AI
en
dc.subject
rule learning
en
dc.title
Deep Symbolic Learning: Discovering Symbols and Rules from Perceptions
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Fondazione Bruno Kessler, Italy
-
dc.contributor.affiliation
University of Padua, Italy
-
dc.contributor.affiliation
Fondazione Bruno Kessler, Italy
-
dc.relation.isbn
978-1-956792-03-4
-
dc.description.startpage
3597
-
dc.description.endpage
3605
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
-
tuw.relation.publisher
International Joint Conferences on Artificial Intelligence
-
tuw.researchinfrastructure
TRIGA Mark II-Nuklearreaktor
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.id
I3
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.name
Automation and Robotics
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
tuw.publisher.doi
10.24963/ijcai.2023/400
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0001-9441-0729
-
tuw.author.orcid
0000-0002-0435-4397
-
tuw.event.name
The 32nd International Joint Conference on Artificial Intelligence (IJCAI 2023)
en
tuw.event.startdate
19-08-2023
-
tuw.event.enddate
25-08-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Macao
-
tuw.event.country
CN
-
tuw.event.presenter
Daniele, Alessandro
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
Fondazione Bruno Kessler
-
crisitem.author.dept
University of Padua
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.orcid
0000-0001-9441-0729
-
crisitem.author.orcid
0000-0002-0435-4397
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering