<div class="csl-bib-body">
<div class="csl-entry">Hofstätter, D., Ilager, S. S., Lujic, I., & Brandic, I. (2023). SymED: Adaptive and Online Symbolic Representation of Data on the Edge. In J. Cano, M. D. Dikaiakos, G. A. Papadopoulos, M. Pericàs, & R. Sakellariou (Eds.), <i>Euro-Par 2023: Parallel Processing : 29th International Conference on Parallel and Distributed Computing, Limassol, Cyprus, August 28 – September 1, 2023, Proceedings</i> (pp. 411–425). Springer. https://doi.org/10.1007/978-3-031-39698-4_28</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190038
-
dc.description.abstract
The edge computing paradigm helps handle the Internet of Things (IoT) generated data in proximity to its source. Challenges occur in transferring, storing, and processing this rapidly growing amount of data on resource-constrained edge devices. Symbolic Representation (SR) algorithms are promising solutions to reduce the data size by converting actual raw data into symbols. Also, they allow data analytics (e.g., anomaly detection and trend prediction) directly on symbols, benefiting large classes of edge applications. However, existing SR algorithms are centralized in design and work offline with batch data, which is infeasible for real-time cases. We propose SymED - Symbolic Edge Data representation method, i.e., an online, adaptive, and distributed approach for symbolic representation of data on edge. SymED is based on the Adaptive Brownian Bridge-based Aggregation (ABBA), where we assume low-powered IoT devices do initial data compression (senders) and the more robust edge devices do the symbolic conversion (receivers). We evaluate SymED by measuring compression performance, reconstruction accuracy through Dynamic Time Warping (DTW) distance, and computational latency. The results show that SymED is able to (i) reduce the raw data with an average compression rate of 9.5%; (ii) keep a low reconstruction error of 13.25 in the DTW space; (iii) simultaneously provide real-time adaptability for online streaming IoT data at typical latencies of 42ms per symbol, reducing the overall network traffic.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Edge Computing
en
dc.subject
Internet of Things (IoT)
en
dc.subject
Algorithms
en
dc.subject
Edge AI
-
dc.subject
Data Analytics
-
dc.title
SymED: Adaptive and Online Symbolic Representation of Data on the Edge
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Österreich
-
dc.contributor.affiliation
Ericsson Nikola Tesla, Croatia
-
dc.relation.isbn
978-3-031-39697-7
-
dc.description.startpage
411
-
dc.description.endpage
425
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Euro-Par 2023: Parallel Processing : 29th International Conference on Parallel and Distributed Computing, Limassol, Cyprus, August 28 – September 1, 2023, Proceedings
-
tuw.container.volume
14100
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
20
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publisher.doi
10.1007/978-3-031-39698-4_28
-
dc.description.numberOfPages
15
-
tuw.author.orcid
0000-0003-1178-6582
-
tuw.author.orcid
0000-0002-8564-6040
-
tuw.event.name
Euro-Par 2023 : 29th International Conference on Parallel and Distributed Computing
en
tuw.event.startdate
28-08-2023
-
tuw.event.enddate
01-09-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Limassol
-
tuw.event.country
CY
-
tuw.event.presenter
Hofstätter, Daniel
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.languageiso639-1
en
-
crisitem.author.dept
TU Wien, Österreich
-
crisitem.author.dept
E194-04 - Forschungsbereich E-Commerce
-
crisitem.author.dept
E194-04 - Forschungsbereich E-Commerce
-
crisitem.author.dept
E194-04 - Forschungsbereich E-Commerce
-
crisitem.author.orcid
0000-0003-1178-6582
-
crisitem.author.orcid
0000-0002-8564-6040
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering