<div class="csl-bib-body">
<div class="csl-entry">Knörr, J. (2023, September 25). <i>Monge-Ampère operators and valuations</i> [Conference Presentation]. Conference on Convex Geometry and Geometric Probability 2023, Salzburg, Austria.</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190226
-
dc.description.abstract
Monge-Ampère-type operators play an important role in many problems in analysis and geometry. Many of these operators can naturally be considered as measure-valued valuations on spaces of convex functions, and consequently, they have found a number of applications in the construction of invariant valuations on convex bodies and convex functions. In this talk, I will present a characterization of a certain class of measure-valued valuations and different descriptions of these functionals in terms of mixed Monge-Ampère operators and differential forms.
en
dc.language.iso
en
-
dc.subject
convex function
en
dc.subject
valuation
en
dc.subject
Monge-Ampère operator
en
dc.title
Monge-Ampère operators and valuations
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.type.category
Conference Presentation
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E104-07 - Forschungsbereich Geometrische Analysis
-
tuw.event.name
Conference on Convex Geometry and Geometric Probability 2023
-
tuw.event.startdate
25-09-2023
-
tuw.event.enddate
29-09-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Salzburg
-
tuw.event.country
AT
-
tuw.event.presenter
Knörr, Jonas
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper not in proceedings
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cp
-
crisitem.author.dept
E104-07 - Forschungsbereich Geometrische Analysis
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie