<div class="csl-bib-body">
<div class="csl-entry">Fricke, C. D., Wolff, D., Kemmerling, M., & Elgeti, S. (2023, May 31). <i>Enhanced Reinforcement Learning-Based Shape Optimization with Flow Field Information</i> [Conference Presentation]. Math 2 Product (M2P) 2023, Taormina, Italy. http://hdl.handle.net/20.500.12708/190248</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190248
-
dc.description.abstract
Reinforcement Learning (RL) is a subfield of Machine Learning (ML), which contains methods that use trial and error to explore an environment via actions representing the Degrees of Freedom. After every performed action, the environment provides the RL algorithm with information about its state - observation - resulting from the action. During the learning process, additionally, a reward is generated. This reward informs the RL algorithm about
the fitness of the applied action for the given environment‘s state. RL is used in many applications, including robotics, control theory, and playing games.
Moreover, RL has recently gained traction in the field of design optimization. Viquerat et. al [1] give an overview of multiple areas of fluid mechanics in which RL is currently applied, including the optimization of shapes inside flow fields. Fricke et al. [2] extend the application of RL to the optimization of flow channels in profile extrusion dies, introducing the ReLeSO framework, which enables its users to perform shape optimization via Reinforcement
Learning.
So far, within shape optimization, the observation returned to the RL algorithm after each action is still limited compared to other applications. Usually, it is restricted to only a few key performance metrics such as flow homogeneity or lift/drag coefficients. In addition, the geometry of the to-be-optimized object can only be included into the learning process via the parameterization used for the optimization. Both limitations can be resolved by providing
the full flow field to the RL algorithm as an observation. It is beneficial to not only provide Finite Element solutions but to preprocess the flow field, e.g., by employing a Convolutional Neural Network-based feature extractor.
Within our ReLeSO framework, the flow field is converted into an RGB image incorporating up to three flow field variables, which is then provided as an observation to the agent. We apply the proposed method to the second use case presented in [2] and show, that the RL algorithm is capable of learning a suitable strategy given the new observations.
en
dc.language.iso
en
-
dc.subject
Shape Optimization
en
dc.subject
Reinforcement Learning
en
dc.subject
Fluid Dynamics
en
dc.subject
Convolutional Neural Networks
en
dc.title
Enhanced Reinforcement Learning-Based Shape Optimization with Flow Field Information
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.contributor.affiliation
RWTH Aachen University
-
dc.contributor.affiliation
RWTH Aachen University
-
dc.type.category
Conference Presentation
-
tuw.researchTopic.id
C2
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
Computational Fluid Dynamics
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Beyond TUW-research foci
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
60
-
tuw.researchTopic.value
10
-
tuw.publication.orgunit
E317-01-1 - Forschungsgruppe Numerische Analyse- und Designmethoden
-
tuw.publication.orgunit
E317-01-2 - Forschungsgruppe Struktur- und Werkstoffsimulation
-
tuw.author.orcid
0000-0002-9495-2285
-
tuw.author.orcid
0000-0003-0141-2050
-
tuw.author.orcid
0000-0002-4474-1666
-
tuw.event.name
Math 2 Product (M2P) 2023
en
dc.description.sponsorshipexternal
RWTH Aachen
-
dc.description.sponsorshipexternal
RWTH Aachen
-
dc.relation.grantnoexternal
thes1136
-
dc.relation.grantnoexternal
jara0185
-
tuw.event.startdate
30-05-2023
-
tuw.event.enddate
01-06-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Taormina
-
tuw.event.country
IT
-
tuw.event.presenter
Fricke, Clemens David
-
wb.sciencebranch
Maschinenbau
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Sonstige Technische Wissenschaften
-
wb.sciencebranch.oefos
2030
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
2119
-
wb.sciencebranch.value
40
-
wb.sciencebranch.value
30
-
wb.sciencebranch.value
30
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cp
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper not in proceedings
-
item.grantfulltext
none
-
crisitem.author.dept
E317-01-2 - Forschungsgruppe Struktur- und Werkstoffsimulation
-
crisitem.author.dept
E317-01 - Forschungsbereich Leichtbau
-
crisitem.author.dept
RWTH Aachen University
-
crisitem.author.dept
E317-01 - Forschungsbereich Leichtbau
-
crisitem.author.orcid
0000-0002-9495-2285
-
crisitem.author.orcid
0000-0003-0141-2050
-
crisitem.author.orcid
0000-0002-4474-1666
-
crisitem.author.parentorg
E317-01 - Forschungsbereich Leichtbau
-
crisitem.author.parentorg
E317 - Institut für Leichtbau und Struktur-Biomechanik
-
crisitem.author.parentorg
E317 - Institut für Leichtbau und Struktur-Biomechanik