<div class="csl-bib-body">
<div class="csl-entry">Varga, J., Raidl, G. R., Rönnberg, E., & Rodemann, T. (2023). Interactive Job Scheduling with Partially Known Personnel Availabilities. In B. Dorronsoro, F. Chicano, G. Danoy, & E.-G. Talbi (Eds.), <i>Optimization and Learning: 6th International Conference, OLA 2023, Malaga, Spain, May 3–5, 2023, Proceedings</i> (pp. 236–247). Springer. https://doi.org/10.1007/978-3-031-34020-8_18</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190265
-
dc.description.abstract
When solving a job scheduling problem that involves humans, the times in which they are available must be taken into account. For practical acceptance of a scheduling tool, it is further crucial that the interaction with the humans is kept simple and to a minimum. Requiring users to fully specify their availability times is typically not reasonable. We consider a scenario in which initially users only suggest single starting times for their jobs and an optimized schedule shall then be found within a small number of interaction rounds. In each round users may only be suggested a small set of alternative time intervals, which are accepted or rejected. To make the best out of these limited interaction possibilities, we propose an approach that utilizes integer linear programming and a theoretically derived probability calculation for the users’ availabilities based on a Markov model. Educated suggestions of alternative time intervals for performing jobs are determined from these acceptance probabilities as well as the optimization’s current state. The approach is experimentally evaluated and compared to diverse baselines. Results show that an initial schedule can be quickly improved over few interaction rounds, and the final schedule may come close to the solution of the full-knowledge case despite the limited interaction.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Communications in Computer and Information Science
-
dc.subject
human machine interaction
en
dc.subject
integer linear programming
en
dc.subject
Job scheduling
en
dc.subject
preference learning
en
dc.title
Interactive Job Scheduling with Partially Known Personnel Availabilities
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Linköping University, Sweden
-
dc.contributor.affiliation
Honda Research Institute Europe GmbH, Germany
-
dc.relation.isbn
978-3-031-34020-8
-
dc.description.startpage
236
-
dc.description.endpage
247
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Optimization and Learning: 6th International Conference, OLA 2023, Malaga, Spain, May 3–5, 2023, Proceedings
-
tuw.container.volume
1824
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.1007/978-3-031-34020-8_18
-
dc.description.numberOfPages
12
-
tuw.author.orcid
0000-0003-1413-7115
-
tuw.author.orcid
0000-0002-3293-177X
-
tuw.author.orcid
0000-0002-2081-2888
-
tuw.author.orcid
0000-0001-6256-0060
-
tuw.editor.orcid
0000-0001-9419-4210
-
tuw.event.name
Optimization and Learning: 6th International Conference, OLA 2023
en
tuw.event.startdate
03-05-2023
-
tuw.event.enddate
05-05-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Malaga
-
tuw.event.country
ES
-
tuw.event.presenter
Varga, Johannes
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.grantfulltext
restricted
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity