<div class="csl-bib-body">
<div class="csl-entry">Kobourov, S. G., Löffler, M., Montecchiani, F., Pilipczuk, M., Rutter, I., Seidel, R., Sorge, M., & Wulms, J. (2023). The Influence of Dimensions on the Complexity of Computing Decision Trees. In B. Williams, Y. Chen, & J. Neville (Eds.), <i>Proceedings of the 37th AAAI Conference on Artificial Intelligence</i> (pp. 8343–8350). AAAI Press. https://doi.org/10.1609/aaai.v37i7.26006</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190275
-
dc.description.abstract
A decision tree recursively splits a feature space Rd and then assigns class labels based on the resulting partition. Decision trees have been part of the basic machine-learning toolkit for decades. A large body of work considers heuristic algorithms that compute a decision tree from training data, usually aiming to minimize in particular the size of the resulting tree. In contrast, little is known about the complexity of the underlying computational problem of computing a minimum-size tree for the given training data. We study this problem with respect to the number d of dimensions of the feature space Rd, which contains n training examples. We show that it can be solved in O(n2d+1)time, but under reasonable complexity-theoretic assumptions it is not possible to achieve f (d)·no(d/ log d) running time. The problem is solvable in (dR)O(dR) ·n1+o(1) time, if there are exactly two classes and R is an upper bound on the number of tree leaves labeled with the first class.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Proceedings of the AAAI Conference on Artificial Intelligence
-
dc.subject
Classification and Regression
en
dc.subject
applications
en
dc.subject
Optimization
en
dc.subject
Transparent, Interpretable,Explainable
en
dc.title
The Influence of Dimensions on the Complexity of Computing Decision Trees
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Arizona, USA
-
dc.contributor.affiliation
Utrecht University, Netherlands (the)
-
dc.contributor.affiliation
University of Perugia, Italy
-
dc.contributor.affiliation
University of Warsaw, Poland
-
dc.contributor.affiliation
University of Passau, Germany
-
dc.contributor.affiliation
Saarland University, Germany
-
dc.contributor.editoraffiliation
Royal Holloway University of London, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.relation.isbn
978-1-57735-880-0
-
dc.relation.issn
2159-5399
-
dc.description.startpage
8343
-
dc.description.endpage
8350
-
dcterms.dateSubmitted
2023
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the 37th AAAI Conference on Artificial Intelligence
-
tuw.container.volume
37, 7
-
tuw.peerreviewed
true
-
tuw.relation.publisher
AAAI Press
-
tuw.relation.publisherplace
Washington DC
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.1609/aaai.v37i7.26006
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0002-0543-8912
-
tuw.editor.orcid
0000-0001-8108-4899
-
tuw.event.name
Thirty-Seventh AAAI Conference on Artificial Intelligence
en
tuw.event.startdate
07-02-2023
-
tuw.event.enddate
14-02-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Washington DC
-
tuw.event.country
US
-
tuw.event.presenter
Sorge, Manuel
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.grantfulltext
restricted
-
item.openairetype
conference paper
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.cerifentitytype
Publications
-
crisitem.author.dept
University of Arizona, USA
-
crisitem.author.dept
Utrecht University
-
crisitem.author.dept
University of Perugia, Italy
-
crisitem.author.dept
University of Warsaw
-
crisitem.author.dept
University of Passau, Germany
-
crisitem.author.dept
Saarland University, Germany
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence