<div class="csl-bib-body">
<div class="csl-entry">Gavioli, C., & Krejci, P. (2023). Degenerate diffusion with Preisach hysteresis. <i>Discrete and Continuous Dynamical Systems - Series S</i>, <i>16</i>(12), 3677–3708. https://doi.org/10.3934/dcdss.2023154</div>
</div>
-
dc.identifier.issn
1937-1632
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190428
-
dc.description.abstract
Fluid diffusion in unsaturated porous media manifests strong hysteresis effects due to surface tension on the liquid-gas interface. We describe hysteresis in the pressure-saturation relation by means of the Preisach operator, which makes the resulting evolutionary PDE strongly degenerate. We prove the existence and uniqueness of a strong global solution in arbitrary space dimension using a special weak convexity concept.
en
dc.language.iso
en
-
dc.publisher
AMER INST MATHEMATICAL SCIENCES-AIMS
-
dc.relation.ispartof
Discrete and Continuous Dynamical Systems - Series S
-
dc.subject
Porous media
en
dc.subject
degenerate PDE
en
dc.subject
hysteresis
en
dc.subject
higher order energies
en
dc.subject
convexity
en
dc.title
Degenerate diffusion with Preisach hysteresis
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Czech Technical University, Czech Republic
-
dc.description.startpage
3677
-
dc.description.endpage
3708
-
dc.type.category
Original Research Article
-
tuw.container.volume
16
-
tuw.container.issue
12
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Discrete and Continuous Dynamical Systems - Series S