<div class="csl-bib-body">
<div class="csl-entry">Heuer, R., & El Chabaan, G. (2023). Nonlinear Vibrations of Bimodular Continua by Means of Isogeometric Analysis. In H. Altenbach, H. Irschik, & A. Porubov (Eds.), <i>Progress in Continuum Mechanics</i> (Vol. 196, pp. 191–200). Springer. https://doi.org/10.1007/978-3-031-43736-6_12</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190437
-
dc.description.abstract
The modeling and numerical analysis of the dynamic response of originally straight homogeneous Bernoulli-Euler beam rigid in shear with classical boundary conditions under time-varying excitation are studied. However, the beam is composed of a bimodular material, thus behaving differently in tension and compression. This implies that the neutral axis does not pass through the geometric centroid of the cross-section and depends not only on the elastic material properties but also on the curvature’s sign and the geometry of the cross-section. Within this study, an isosceles triangular cross-section is analyzed, showing a difference in neutral axis position between positive and negative curvature with respect to the modular ratio. The governing equation for flexural oscillations of the bimodular beam is formulated based on the model with effective two-layer laminates and discontinuous natural beam axis with respect to the axis through the cross-section’s geometric centroid, which is used as an independent reference axis of the bimodular beam structure. The numerical analysis of the dynamic response of the bimodular beam is investigated by means of isogeometric analysis (IGA). The fundamental idea behind isogeometric analysis is to use the same basis functions for constructing the exact original geometric model and for approximating the unknown solution fields. Finally, a numerical study is given to verify the effectiveness of the isogeometric approach on the dynamic analysis of the bimodular beam.
en
dc.language.iso
en
-
dc.subject
Bimodular material
en
dc.subject
beam structures
en
dc.subject
nonlinear vibrations
en
dc.subject
isogeometric analysis
en
dc.title
Nonlinear Vibrations of Bimodular Continua by Means of Isogeometric Analysis
en
dc.type
Book Contribution
en
dc.type
Buchbeitrag
de
dc.contributor.editoraffiliation
Otto-von-Guericke University Magdeburg, Germany
-
dc.contributor.editoraffiliation
Russian Academy of Sciences, Russian Federation (the)
-
dc.relation.isbn
978-3-031-43736-6
-
dc.relation.doi
10.1007/978-3-031-43736-6
-
dc.relation.issn
1869-8441
-
dc.description.startpage
191
-
dc.description.endpage
200
-
dc.type.category
Edited Volume Contribution
-
tuw.booktitle
Progress in Continuum Mechanics
-
tuw.container.volume
196
-
tuw.book.ispartofseries
Advanced Structured Materials
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.book.chapter
12
-
tuw.researchTopic.id
M5
-
tuw.researchTopic.id
C1
-
tuw.researchTopic.name
Composite Materials
-
tuw.researchTopic.name
Computational Materials Science
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
70
-
tuw.publication.orgunit
E212-03 - Forschungsbereich Baumechanik und Baudynamik
-
tuw.publisher.doi
10.1007/978-3-031-43736-6_12
-
dc.description.numberOfPages
10
-
tuw.editor.orcid
0000-0003-3502-9324
-
tuw.editor.orcid
0000-0002-9893-7242
-
wb.sciencebranch
Bauingenieurwesen
-
wb.sciencebranch.oefos
2011
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_3248
-
item.openairetype
book part
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
crisitem.author.dept
E212-03 - Forschungsbereich Baumechanik und Baudynamik
-
crisitem.author.dept
E212-03 - Forschungsbereich Baumechanik und Baudynamik