<div class="csl-bib-body">
<div class="csl-entry">Banjai, L., Melenk, J. M., & Schwab, C. (2023). hp-FEM for reaction–diffusion equations. II: robust exponential convergence for multiple length scales in corner domains. <i>IMA Journal of Numerical Analysis</i>, <i>43</i>(6), 3282–3325. https://doi.org/10.1093/imanum/drac070</div>
</div>
-
dc.identifier.issn
0272-4979
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190501
-
dc.description.abstract
In bounded, polygonal domains Ω ⊂ ℝ² with Lipschitz boundary ∂Ω consisting of a finite number of Jordan curves admitting analytic parametrizations, we analyze hp-FEM discretizations of linear, second-order, singularly perturbed reaction–diffusion equations on so-called geometric boundary layer meshes. We prove, under suitable analyticity assumptions on the data, that these hp-FEM afford exponential convergence in the natural ‘energy’ norm of the problem, as long as the geometric boundary layer mesh can resolve the smallest length scale present in the problem. Numerical experiments confirm the robust exponential convergence of the proposed hp-FEM.
en
dc.language.iso
en
-
dc.publisher
OXFORD UNIV PRESS
-
dc.relation.ispartof
IMA Journal of Numerical Analysis
-
dc.subject
hp-FEM
en
dc.subject
singular perturbation
en
dc.subject
reaction-diffusion equation
en
dc.title
hp-FEM for reaction–diffusion equations. II: robust exponential convergence for multiple length scales in corner domains