<div class="csl-bib-body">
<div class="csl-entry">Conselvan, F., Mascherbauer, P., & Harringer, D. (2023, February 17). <i>Neural network to generate synthetic building electrical load profiles</i> [Conference Presentation]. 13. Internationale Energiewirtschaftstagung IEWT 2023, Wien, Austria. http://hdl.handle.net/20.500.12708/190510</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190510
-
dc.description.abstract
At our days, we can collect a considerable amount of data in the energy sector, but, due to privacy concerns, companies are unable to share costumer meter data for general research and analysis. Synthetic data provides a valid alternative to real data since they anonymise the data and maintain its original statistical information. This paper presents a real case scenario of the generation of circa 50 000 synthetic energy load profiles, addressing the following questions:
1. What are the exogenous variables of the load profiles, like building and vintage type that can be used to generate synthetic data?
2. What is the best fitting methodology to generate synthetic data for energy load profiles?
3. What are the limitations and the challenges in using the chosen methodology?
This research is carried out in the framework of the Horizon Europe project MODERATE.
In the preliminary results, we have analysed circa 50 000 annual electric load profiles,
following the below methodology:
1. Data Standardisation. Each load profile is normalized by its annual peak load to make sure that
different buildings are similar in magnitude.
2. Data Clustering. Load profiles vary a lot, even for the same building. So, load profiles are
clustered to capture the key variables and characteristics. Different clustering methods are used
and compared, specifically:
- Hierarchical based: hierarchical clustering groups
- Centroid base: k-means and agglomerative cluster, whose optimal value of clusters is
determined with Elbow and Silhouette methods
- Principal Component Analysis (PCA)
- Density-based: DBSCAN and HBDScan
3. Synthetic data generation. We generate the synthetic data using the neural network algorithm
GANs (Generative Adversial Networks), which consists of two neural networks, a generator and
a discriminator, contest with each other.
The first step is to select the optimal number of clusters, which is 10 for k-means and 5 for PCA. Some clusters demonstrate a clear working day pattern with energy usage increase in the morning and decrease in the late afternoon.
The second step is to evaluate the accuracy of the generator and the discriminator, which we aspect to increase with the increase of the training epochs. We aspect that at the beginning of the training the accuracy of the discriminator is high, and it decreases with the training process going on, because the generator can generate load profiles that are more like the real ones. We aim to determine the number of the epochs that benchmark the accuracy of the generator and the challenge for the discriminator to discern fake from real load profiles.
en
dc.language.iso
en
-
dc.subject
Synthetic data
en
dc.subject
load profiles
en
dc.subject
smart meter data
en
dc.title
Neural network to generate synthetic building electrical load profiles
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.contributor.affiliation
e-think energy research, Austria
-
dc.contributor.affiliation
TU Wien, Austria
-
dc.type.category
Conference Presentation
-
tuw.researchTopic.id
E1
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Energy Active Buildings, Settlements and Spatial Infrastructures
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E370-03 - Forschungsbereich Energiewirtschaft und Energieeffizienz
-
tuw.author.orcid
0000-0001-7733-8462
-
tuw.author.orcid
0000-0002-5736-5620
-
tuw.event.name
13. Internationale Energiewirtschaftstagung IEWT 2023
-
dc.description.sponsorshipexternal
Moderate
-
dc.relation.grantnoexternal
101069834
-
tuw.event.startdate
15-02-2023
-
tuw.event.enddate
17-02-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.institution
TU Wien
-
tuw.event.presenter
Conselvan, Francesca
-
tuw.event.track
Single Track
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.value
100
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cp
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper not in proceedings
-
crisitem.author.dept
e-think energy research (Vienna, AT)
-
crisitem.author.dept
E370-03 - Forschungsbereich Energiewirtschaft und Energieeffizienz
-
crisitem.author.dept
TU Wien
-
crisitem.author.orcid
0000-0001-7733-8462
-
crisitem.author.orcid
0000-0002-5736-5620
-
crisitem.author.parentorg
E370 - Institut für Energiesysteme und Elektrische Antriebe