<div class="csl-bib-body">
<div class="csl-entry">Sharifmoghaddam, K., Maleczek, R., & Nawratil, G. (2023). Generalizing rigid-foldable tubular structures of T-hedral type. <i>Mechanics Research Communications</i>, <i>132</i>, Article 104151. https://doi.org/10.1016/j.mechrescom.2023.104151</div>
</div>
-
dc.identifier.issn
0093-6413
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190572
-
dc.description.abstract
We introduce an alternative way of constructing continuous flexible tubes and tubular structures based on a discrete, semi-discrete and smooth construction of surfaces known as T-hedra in the discrete case and profile-affine surfaces in the smooth setting, respectively. The geometric understanding of this method enables us to generalize discrete tubes with a rigid-foldability and to extend the construction to smooth and semi-discrete tubes with an isometric deformation. This achievement implies a unified treatment of continuous flexible structures, like surfaces and metamaterials composed of tubes, and it is the base for a deeper study of zipper tubes and their generalization. Moreover, we discuss a potential application of the presented structures for the design of foldable bridges.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
PERGAMON-ELSEVIER SCIENCE LTD
-
dc.relation.ispartof
Mechanics Research Communications
-
dc.subject
Metamaterials
en
dc.subject
Flexible tubes
en
dc.subject
T-hedra
en
dc.subject
Rigid-foldable
en
dc.subject
Flat-foldable
en
dc.subject
Origami tubes
en
dc.subject
Zipper tubes
en
dc.subject
Tubular structures
en
dc.subject
Sandwich surfaces
en
dc.title
Generalizing rigid-foldable tubular structures of T-hedral type
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Universität Innsbruck, Austria
-
dc.relation.grantno
F 77
-
dc.type.category
Original Research Article
-
tuw.container.volume
132
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.project.title
Advanced Computational Design
-
tuw.researchTopic.id
X1
-
tuw.researchTopic.name
Beyond TUW-research foci
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Mechanics Research Communications
-
tuw.publication.orgunit
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
tuw.publisher.doi
10.1016/j.mechrescom.2023.104151
-
dc.date.onlinefirst
2023-06-26
-
dc.identifier.articleid
104151
-
dc.identifier.eissn
1873-3972
-
dc.description.numberOfPages
15
-
tuw.author.orcid
0000-0003-3501-400X
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
5
-
wb.sciencebranch.value
95
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.grantno
F 77
-
crisitem.author.dept
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
crisitem.author.dept
Universität Innsbruck
-
crisitem.author.dept
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen
-
crisitem.author.orcid
0000-0002-7665-2609
-
crisitem.author.orcid
0000-0003-3501-400X
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie