<div class="csl-bib-body">
<div class="csl-entry">Bareedu, Y. S., Frühwirth, T., Niedermeier, C., Sabou, R. M., Steindl, G., Thuluva, A. S., Tsaneva, S., & Tufek Ozkaya, N. (2023). Deriving semantic validation rules from industrial standards: An OPC UA study. <i>Semantic Web</i>. https://doi.org/10.3233/SW-233342</div>
</div>
-
dc.identifier.issn
1570-0844
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190612
-
dc.description.abstract
Industrial standards provide guidelines for data modeling to ensure interoperability between stakeholders of an industry branch (e.g., robotics). Most frequently, such guidelines are provided in an unstructured format (e.g., pdf documents) which hampers the automated validations of information objects (e.g., data models) that rely on such standards in terms of their compliance with the modeling constraints prescribed by the guidelines. This raises the risk of costly interoperability errors induced by the incorrect use of the standards. There is, therefore, an increased interest in automatic semantic validation of information objects based on industrial standards. In this paper we focus on an approach to semantic validation by formally representing the modeling constraints from unstructured documents as explicit, machine-actionable rules (to be then used for semantic validation) and (semi-)automatically extracting such rules from pdf documents. While our approach aims to be generically applicable, we exemplify an adaptation of the approach in the concrete context of the OPC UA industrial standard, given its large-scale adoption among important industrial stakeholders and the OPC UA internal efforts towards semantic validation. We conclude that (i) it is feasible to represent modeling constraints from the standard specifications as rules, which can be organized in a taxonomy and represented using Semantic Web technologies such as OWL and SPARQL; (ii) we could automatically identify modeling constraints in the specification documents by inspecting the tables (P=87%) and text of these documents (F1 up to 94%); (iii) the translation of the modeling constraints into formal rules could be fully automated when constraints were extracted from tables and required a Human-in-the-loop approach for constraints extracted from text.
en
dc.description.sponsorship
Siemens AG
-
dc.language.iso
en
-
dc.publisher
IOS PRESS
-
dc.relation.ispartof
Semantic Web
-
dc.subject
Semantic Validation
en
dc.subject
Information Extraction
en
dc.subject
Natural Language Processing
en
dc.subject
SPARQL
en
dc.subject
Human-in-the-Loop
en
dc.subject
OPC UA
en
dc.title
Deriving semantic validation rules from industrial standards: An OPC UA study
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Siemens AG, Germany
-
dc.contributor.affiliation
Siemens AG, Germany
-
dc.contributor.affiliation
Siemens AG, Germany
-
dc.contributor.affiliation
Siemens AG, Germany
-
dc.relation.grantno
0
-
dc.type.category
Original Research Article
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
OPC UA Rule Editor
-
tuw.researchTopic.id
I6
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.id
I3
-
tuw.researchTopic.name
Digital Transformation in Manufacturing
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.name
Automation and Robotics
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
35
-
tuw.researchTopic.value
35
-
dcterms.isPartOf.title
Semantic Web
-
tuw.publication.orgunit
E191-03 - Forschungsbereich Automation Systems
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publisher.doi
10.3233/SW-233342
-
dc.date.onlinefirst
2023
-
dc.identifier.eissn
2210-4968
-
dc.description.numberOfPages
38
-
tuw.author.orcid
0000-0001-8133-4747
-
tuw.author.orcid
0000-0001-5562-2534
-
tuw.author.orcid
0000-0001-9301-8418
-
tuw.author.orcid
0000-0002-9035-9206
-
tuw.author.orcid
0000-0002-7564-4279
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairetype
research article
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
crisitem.author.dept
Siemens AG, Germany
-
crisitem.author.dept
E191-03 - Forschungsbereich Automation Systems
-
crisitem.author.dept
Siemens AG, Germany
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E191-03 - Forschungsbereich Automation Systems
-
crisitem.author.dept
Siemens AG, Germany
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
Siemens AG, Germany
-
crisitem.author.orcid
0000-0001-8133-4747
-
crisitem.author.orcid
0000-0001-5562-2534
-
crisitem.author.orcid
0000-0001-9301-8418
-
crisitem.author.orcid
0000-0002-9035-9206
-
crisitem.author.orcid
0000-0002-7564-4279
-
crisitem.author.parentorg
E191 - Institut für Computer Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E191 - Institut für Computer Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering