<div class="csl-bib-body">
<div class="csl-entry">Eiben, E., Ordyniak, S., Paesani, G., & Szeider, S. (2023). Learning Small Decision Trees with Large Domain. In <i>Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)</i> (pp. 3184–3192). https://doi.org/10.24963/ijcai.2023/355</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190630
-
dc.description.abstract
One favors decision trees (DTs) of the smallest size or depth to facilitate explainability and interpretability. However, learning such an optimal DT from data is well-known to be NP-hard. To overcome this complexity barrier, Ordyniak and Szeider (AAAI 21) initiated the study of optimal DT learning under the parameterized complexity perspective. They showed that solution size (i.e., number of nodes or depth of the DT) is insufficient to obtain fixed-parameter tractability (FPT). Therefore, they proposed an FPT algorithm that utilizes two auxiliary parameters: the maximum difference (as a structural property of the data set) and maximum domain size. They left it as an open question of whether bounding the maximum domain size is necessary. The main result of this paper answers this question. We present FPT algorithms for learning a smallest or lowest-depth DT from data, with the only parameters solution size and maximum difference. Thus,
our algorithm is significantly more potent than the one by Szeider and Ordyniak as it can handle problem inputs with features that range over unbounded domains. We also close several gaps concerning the quality of approximation one obtains by only considering DTs based on minimum support sets.
en
dc.language.iso
en
-
dc.relation.ispartofseries
International Joint Conference on Artificial Intelligence Proceedings
-
dc.subject
Computational complexity of reasoning
en
dc.subject
Knowledge Representation
en
dc.subject
Machine Learning
en
dc.title
Learning Small Decision Trees with Large Domain
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Royal Holloway University of London, United Kingdom of Great Britain and Northern Ireland (the)
-
dc.contributor.affiliation
University of Leeds, UK
-
dc.contributor.affiliation
University of Leeds, UK
-
dc.relation.isbn
978-1-956792-03-4
-
dc.relation.issn
1045-0823
-
dc.description.startpage
3184
-
dc.description.endpage
3192
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
-
tuw.peerreviewed
true
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-01 - Forschungsbereich Algorithms and Complexity
-
tuw.publisher.doi
10.24963/ijcai.2023/355
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0002-2383-1339
-
tuw.author.orcid
0000-0001-8994-1656
-
tuw.event.name
Thirty-Second International Joint Conference on Artificial Intelligence
en
tuw.event.startdate
19-08-2023
-
tuw.event.enddate
25-08-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Macao
-
tuw.event.country
CN
-
tuw.event.presenter
Eiben, Eduard
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.grantfulltext
restricted
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.openairetype
conference paper
-
crisitem.author.dept
E186 - Institut für Computergraphik und Algorithmen
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity
-
crisitem.author.dept
University of Leeds, UK
-
crisitem.author.dept
E192-01 - Forschungsbereich Algorithms and Complexity