<div class="csl-bib-body">
<div class="csl-entry">Strohmayer, J., & Kampel, M. (2023). WiFi CSI-Based Long-Range Through-Wall Human Activity Recognition with the ESP32. In <i>Computer Vision Systems</i> (pp. 41–50). Springer. https://doi.org/10.1007/978-3-031-44137-0_4</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190653
-
dc.description.abstract
WiFi Channel State Information (CSI)-based human activity recognition (HAR) is an unobtrusive method for contactless, long-range sensing in spatially constrained environments while preserving visual privacy. Despite the presence of numerous WiFi-enabled devices around us, few expose CSI to users, resulting in a lack of sensing hardware options. Recently, variants of the Espressif ESP32 have emerged as potential low-cost, easy-to-deploy solutions for WiFi CSI-based HAR. In this work, we evaluate the ESP32-S3’s long-range through-wall HAR capabilities by combining it with a 2.4GHz directional biquad antenna. The experimental setup uses a transmitter-receiver configuration spanning 18.5m across five rooms. We assess line-of-sight (LOS) and non-line-of-sight (NLOS) performance using CNN HAR models trained on CSI spectrograms. CSI HAR datasets used in this work consist of 392 LOS and 384 NLOS spectrograms from three activity classes and are made publicly available. The gathered results clearly demonstrate the feasibility of long-range through-wall presence detection and activity recognition with the proposed setup.
en
dc.description.sponsorship
Wirtschaftsagentur Wien Ein Fonds der Stadt Wien
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
channel state information (CSI)
en
dc.subject
ESP32
en
dc.subject
human activity recognition (HAR)
en
dc.subject
non-line-of-sight (NLOS)
en
dc.subject
through-wall sensing
en
dc.title
WiFi CSI-Based Long-Range Through-Wall Human Activity Recognition with the ESP32
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.isbn
978-3-031-44137-0
-
dc.description.startpage
41
-
dc.description.endpage
50
-
dc.relation.grantno
4829418
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Computer Vision Systems
-
tuw.container.volume
14253
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.project.title
Blindsight - Multimodale Sensorik zur menschlichen Verhaltensanalyse
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
tuw.publisher.doi
10.1007/978-3-031-44137-0_4
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0003-1560-4221
-
tuw.author.orcid
0000-0002-5217-2854
-
tuw.event.name
International Conference on Computer Vision Systems (ICVS 2023)
en
tuw.event.startdate
27-09-2023
-
tuw.event.enddate
29-09-2023
-
tuw.event.online
Online
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.presenter
Strohmayer, Julian
-
tuw.presentation.online
Online
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.orcid
0000-0003-1560-4221
-
crisitem.author.orcid
0000-0002-5217-2854
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology