<div class="csl-bib-body">
<div class="csl-entry">Schreiberhuber, K., Sabou, M., Ekaputra, F. J., Knees, P., Aryan, P. R., Einfalt, A., & Mosshammer, R. (2023). Causality Prediction with Neural-Symbolic Systems: A Case Study in Smart Grids. In <i>Proceedings of the 17th International Workshop on Neural-Symbolic Learning and Reasoning (NeSy 2023)</i> (pp. 336–347). CEUR-WS.org. https://doi.org/10.34726/5300</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190669
-
dc.identifier.uri
https://doi.org/10.34726/5300
-
dc.description.abstract
In complex systems, such as smart grids, explanations of system events benefit both system operators and users. Deriving causality knowledge as a basis for explanations has been addressed with rule-based, symbolic AI systems. However, these systems are limited in their scope to discovering causalities that can be inferred by their rule base. To address this gap, we propose a neural-symbolic architecture that augments symbolic approaches with sub-symbolic components, in order to broaden the scope of the identified causalities. Concretely, we use Knowledge Graph Embeddings (KGE) to solve causality knowledge derivation as a link prediction problem. Experimental results show that the neural-symbolic approach can predict causality knowledge with a good performance and has the potential to predict causalities that were not present in the symbolic system, thus broadening the causality knowledge scope of symbolic approaches.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.relation.ispartofseries
CEUR Workshop Proceedings
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Causality
en
dc.subject
Explainability
en
dc.subject
Knowledge Graph
en
dc.subject
Knowledge Graph Embedding
en
dc.subject
Smart Grid
en
dc.title
Causality Prediction with Neural-Symbolic Systems: A Case Study in Smart Grids
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/5300
-
dc.contributor.affiliation
Siemens (Austria), Austria
-
dc.contributor.affiliation
Siemens (Austria), Austria
-
dc.description.startpage
336
-
dc.description.endpage
347
-
dc.relation.grantno
P 33526-N
-
dc.rights.holder
The Authors
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1613-0073
-
tuw.booktitle
Proceedings of the 17th International Workshop on Neural-Symbolic Learning and Reasoning (NeSy 2023)
-
tuw.container.volume
3432
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
CEUR Workshop Proceedings
-
tuw.relation.publisher
CEUR-WS.org
-
tuw.project.title
Empfehlungssystem & Nutzer: Hin zu gegenseitigem Verständnis
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
dc.identifier.libraryid
AC17204881
-
dc.description.numberOfPages
12
-
tuw.author.orcid
0000-0001-9301-8418
-
tuw.author.orcid
0000-0003-4569-2496
-
tuw.author.orcid
0000-0003-3906-1292
-
tuw.author.orcid
0000-0002-1698-1064
-
tuw.author.orcid
0009-0008-9386-9309
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.event.name
17th International Workshop on Neural-Symbolic Learning and Reasoning (NeSy 2023)
en
dc.description.sponsorshipexternal
FFG
-
dc.relation.grantnoexternal
FO999894802
-
tuw.event.startdate
03-07-2023
-
tuw.event.enddate
05-07-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Certosa di Pontignano
-
tuw.event.country
IT
-
tuw.event.presenter
Schreiberhuber, Katrin
-
tuw.event.track
Single Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.grantfulltext
open
-
item.cerifentitytype
Publications
-
item.openairetype
conference paper
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-01 - Forschungsbereich Software Engineering
-
crisitem.author.dept
E370 - Institut für Energiesysteme und Elektrische Antriebe
-
crisitem.author.dept
Siemens (Austria)
-
crisitem.author.orcid
0000-0001-9301-8418
-
crisitem.author.orcid
0000-0003-4569-2496
-
crisitem.author.orcid
0000-0003-3906-1292
-
crisitem.author.orcid
0000-0002-1698-1064
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik