<div class="csl-bib-body">
<div class="csl-entry">Hertrich-Jeromin, U., Pember, M., & Polly, D. (2023). Channel linear Weingarten surfaces in space forms. <i>Beitraege Zur Algebra Und Geometrie</i>, <i>64</i>(4), 969–1009. https://doi.org/10.1007/s13366-022-00664-w</div>
</div>
-
dc.identifier.issn
0138-4821
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190780
-
dc.description.abstract
Channel linear Weingarten surfaces in space forms are investigated in a Lie sphere geometric setting, which allows for a uniform treatment of different ambient geometries. We show that any channel linear Weingarten surface in a space form is isothermic and, in particular, a surface of revolution in its ambient space form. We obtain explicit parametrisations for channel surfaces of constant Gauss curvature in space forms, and thereby for a large class of linear Weingarten surfaces up to parallel transformation.