<div class="csl-bib-body">
<div class="csl-entry">Huo, X., Jüngel, A., & Tzavaras, A. E. (2023). Existence and weak–strong uniqueness for Maxwell–Stefan–Cahn–Hilliard systems. <i>Annales de l’Institut Henri Poincaré C</i>, <i>41</i>(4), 797–852. https://doi.org/10.4171/aihpc/89</div>
</div>
-
dc.identifier.issn
0294-1449
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190877
-
dc.description.abstract
A Maxwell--Stefan system for fluid mixtures with driving forces depending on Cahn–Hilliard-type chemical potentials is analyzed. The corresponding parabolic cross-diffusion equations contain fourth-order derivatives and are considered in a bounded domain with no-flux boundary conditions. The nonconvex part of the energy is assumed to have a bounded Hessian. The main difficulty of the analysis is the degeneracy of the diffusion matrix, which is overcome by proving the positive-definiteness of the matrix on a subspace and using the Bott–Duffin matrix inverse. The global existence of weak solutions and a weak–strong uniqueness property are shown by a careful combination of (relative) energy and entropy estimates, yielding H²(Ω) bounds for the densities, which cannot be obtained from the energy or entropy inequalities alone.
en
dc.language.iso
en
-
dc.publisher
EUROPEAN MATHEMATICAL SOC-EMS
-
dc.relation.ispartof
Annales de l'Institut Henri Poincaré C
-
dc.subject
Cross-diffusion systems
en
dc.subject
global existence
en
dc.subject
weak–strong uniqueness
en
dc.subject
relative entropy
en
dc.subject
relative free energy
en
dc.subject
parabolic fourth-order equations
en
dc.subject
Maxwell–Stefan equations
en
dc.subject
Cahn–Hilliard equations
en
dc.title
Existence and weak–strong uniqueness for Maxwell–Stefan–Cahn–Hilliard systems
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
TU Wien, Österreich
-
dc.contributor.affiliation
King Abdullah University of Science and Technology (KAUST), Kingdom of Saudi Arabia