<div class="csl-bib-body">
<div class="csl-entry">Bahr, B., Faustmann, M., Marcati, C., Melenk, J. M., & Schwab, C. (2023). Exponential Convergence of hp-FEM for the Integral Fractional Laplacian in 1D. In J. M. Melenk, I. Perugia, J. Schöberl, & C. Schwab (Eds.), <i>Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1 : Selected Papers from the ICOSAHOM Conference, Vienna, Austria, July 12-16, 2021</i> (pp. 291–306). Springer. https://doi.org/10.1007/978-3-031-20432-6_18</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190879
-
dc.description.abstract
We prove weighted analytic regularity for the solution of the integral fractional Poisson problem on bounded intervals with analytic right-hand side. Based on this regularity result, we prove exponential convergence of the hp-FEM on geometric boundary-refined meshes.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computational Science and Engineering
-
dc.subject
hp-FEM
en
dc.subject
fractional diffusion
en
dc.title
Exponential Convergence of hp-FEM for the Integral Fractional Laplacian in 1D
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
ETH Zurich, Switzerland
-
dc.contributor.affiliation
ETH Zurich, Switzerland
-
dc.contributor.editoraffiliation
University of Vienna, Austria
-
dc.contributor.editoraffiliation
ETH Zurich, Switzerland
-
dc.relation.isbn
978-3-031-20432-6
-
dc.description.startpage
291
-
dc.description.endpage
306
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2020+1 : Selected Papers from the ICOSAHOM Conference, Vienna, Austria, July 12-16, 2021