<div class="csl-bib-body">
<div class="csl-entry">Key, F., & Freinberger, L. (2023). <i>A Formulation of Structural Design Optimization Problems for Quantum Annealing</i>. arXiv. https://doi.org/10.48550/arXiv.2311.18565</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/190946
-
dc.description.abstract
We present a novel formulation of structural design optimization problems specifically tailored to be solved by quantum annealing (QA). Structural design optimization aims to find the best, i.e., material-efficient yet high-performance, configuration of a structure. To this end, computational optimization strategies can be employed, where a recently evolving strategy based on quantum mechanical effects is QA. This approach requires the optimization problem to be present, e.g., as a quadratic unconstrained binary optimization (QUBO) model. Thus, we develop a novel formulation of the optimization problem. The latter typically involves an analysis model for the component. Here, we use energy minimization principles that govern the behavior of structures under applied loads. This allows us to state the optimization problem as one overall minimization problem. Next, we map this to a QUBO problem that can be immediately solved by QA. We validate the proposed approach using a size optimization problem of a compound rod under self-weight loading. To this end, we develop strategies to account for the limitations of currently available hardware and find that the presented formulation is suitable for solving structural design optimization problems through QA and, for small-scale problems, already works on today's hardware.
en
dc.language.iso
en
-
dc.subject
Structural Design Optimization
en
dc.subject
Quantum Annealing
en
dc.subject
Applied Mechanics
en
dc.subject
Energy Principles
en
dc.subject
Complementary Energy
en
dc.subject
Size Optimization
en
dc.subject
Compliance Minimization
en
dc.title
A Formulation of Structural Design Optimization Problems for Quantum Annealing
en
dc.type
Preprint
en
dc.type
Preprint
de
dc.identifier.arxiv
2311.18565
-
dc.contributor.affiliation
TU Wien, Austria
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
40
-
tuw.publication.orgunit
E317-01-1 - Forschungsgruppe Numerische Analyse- und Designmethoden
-
tuw.publisher.doi
10.48550/arXiv.2311.18565
-
tuw.author.orcid
0000-0001-6622-4806
-
tuw.publisher.server
arXiv
-
dc.relation.ispreviousversionof
10.3390/math12030482
-
wb.sciencebranch
Maschinenbau
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Sonstige Technische Wissenschaften
-
wb.sciencebranch.oefos
2030
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
2119
-
wb.sciencebranch.value
40
-
wb.sciencebranch.value
20
-
wb.sciencebranch.value
40
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.openairetype
preprint
-
item.openairecristype
http://purl.org/coar/resource_type/c_816b
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E317-01-1 - Forschungsgruppe Numerische Analyse- und Designmethoden