<div class="csl-bib-body">
<div class="csl-entry">Brož, P., Yan, X., Romaka, V., Fabrichnaya, O., Kriegel, M. J., Bursíková, V., Buršík, J., Vřešťál, J., Rogl, G., Michor, H., Bauer, E., Eiberger, M., Grytsiv, A., Giester, G., & Rogl, P. F. (2024). Constitution, physical properties and thermodynamic modeling of the Hf-Mn system. <i>Journal of Alloys and Compounds</i>, <i>976</i>, Article 173060. https://doi.org/10.1016/j.jallcom.2023.173060</div>
</div>
-
dc.identifier.issn
0925-8388
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191066
-
dc.description.abstract
The Hf-Mn system is of a long-time interest due to the intermetallic Laves phase HfMn₂, a hydrogen storage material. Although this system has been experimentally investigated by several authors and critical reviews and thermodynamic modelling have been performed, there is still a lack of reliable information, particularly as the phase "HfMn" (sometimes labelled as "Hf₃Mn₂" or "Hf₂Mn") is suspected to be oxygen stabilized. This work includes a thorough investigation of the Hf-Mn phase equilibria employing diffusion zones, thermal analysis, powder and single crystal X-ray analyses, analytical electron microscopy as well as physical property studies of the Laves phase (magnetic susceptibility, specific heat, electrical resistivity and mechanical properties). The phase near “HfMn” was shown (TEM, WDX electron microprobe data, X-ray single crystal analysis) to be an oxygen stabilized phase with the formula Hf₃₊ₓMn₃₋ₓO₁₋ᵧ (defect η-W₃Fe₃C type). Properties such as magnetic susceptibility/magnetization; 2–300 K, specific heat (2–1100 K), electrical resistivity (2–300 K) classify HfMn2 as a metallic spin-fluctuation system with itinerant paramagnetism, originating from 3d states at Mn-sites and local moment paramagnetism of antisite Mn-atoms at Hf-sites. Mechanical properties (elastic moduli from density functional theory (DFT) and nanoindentation as well as hardness) group the Laves phase among rather hard and brittle intermetallics. DFT modeling revealed that Hf₃₊ₓMn₃₋ₓ is thermodynamically unstable, but significant gains in enthalpy of formation arise from the inclusion of oxygen atoms, stabilizing the η phase. All phase diagram and DFT data together with the former literature information were used for the thermodynamic CALPHAD-type modelling of the Hf-Mn system.
en
dc.language.iso
en
-
dc.publisher
ELSEVIER SCIENCE SA
-
dc.relation.ispartof
Journal of Alloys and Compounds
-
dc.subject
DFT
en
dc.subject
Intermetallics
en
dc.subject
Crystal structure
en
dc.subject
Laves phase
en
dc.subject
Phase diagrams
en
dc.subject
Physical properties
en
dc.title
Constitution, physical properties and thermodynamic modeling of the Hf-Mn system
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Masaryk University, Czechia
-
dc.contributor.affiliation
University of Vienna, Austria
-
dc.contributor.affiliation
Technical University Bergakademie Freiberg, Germany
-
dc.contributor.affiliation
Technical University Bergakademie Freiberg, Germany
-
dc.contributor.affiliation
Masaryk University, Czechia
-
dc.contributor.affiliation
Czech Academy of Sciences, Czechia
-
dc.contributor.affiliation
Masaryk University, Czechia
-
dc.contributor.affiliation
University of Vienna, Austria
-
dc.contributor.affiliation
University of Vienna, Austria
-
dc.contributor.affiliation
University of Vienna, Austria
-
dc.contributor.affiliation
University of Vienna, Austria
-
dc.contributor.affiliation
University of Vienna, Austria
-
dc.type.category
Original Research Article
-
tuw.container.volume
976
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
M3
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.name
Metallic Materials
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.value
40
-
tuw.researchTopic.value
60
-
dcterms.isPartOf.title
Journal of Alloys and Compounds
-
tuw.publication.orgunit
E138 - Institut für Festkörperphysik
-
tuw.publication.orgunit
E138-04 - Forschungsbereich Quantum Materials
-
tuw.publication.orgunit
E138-03 - Forschungsbereich Functional and Magnetic Materials
-
tuw.publisher.doi
10.1016/j.jallcom.2023.173060
-
dc.date.onlinefirst
2023-12-07
-
dc.identifier.articleid
173060
-
dc.identifier.eissn
1873-4669
-
dc.description.numberOfPages
17
-
tuw.author.orcid
0000-0002-6392-1355
-
tuw.author.orcid
0000-0001-5750-3192
-
tuw.author.orcid
0000-0001-9356-6529
-
tuw.author.orcid
0000-0002-6749-9788
-
tuw.author.orcid
0000-0002-8056-5006
-
tuw.author.orcid
0000-0003-1642-5946
-
tuw.author.orcid
0000-0002-3883-4188
-
tuw.author.orcid
0000-0002-7733-1612
-
wb.sci
true
-
wb.sciencebranch
Chemie
-
wb.sciencebranch
Physik, Astronomie
-
wb.sciencebranch.oefos
1040
-
wb.sciencebranch.oefos
1030
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.openairetype
research article
-
item.languageiso639-1
en
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
crisitem.author.dept
Masaryk University
-
crisitem.author.dept
E138-04 - Forschungsbereich Quantum Materials
-
crisitem.author.dept
University of Vienna
-
crisitem.author.dept
TU Bergakademie Freiberg
-
crisitem.author.dept
TU Bergakademie Freiberg
-
crisitem.author.dept
Masaryk University
-
crisitem.author.dept
Czech Academy of Sciences
-
crisitem.author.dept
Masaryk University
-
crisitem.author.dept
E138 - Institut für Festkörperphysik
-
crisitem.author.dept
E138-03 - Forschungsbereich Functional and Magnetic Materials
-
crisitem.author.dept
E138-03 - Forschungsbereich Functional and Magnetic Materials