<div class="csl-bib-body">
<div class="csl-entry">Ahn, H., Mascaro, E. V., & Lee, D. (2023). Can We Use Diffusion Probabilistic Models for 3D Motion Prediction? In <i>ICRA 2023 : conference proceedings : 29th May-2nd June 2023, ExCeL London : IEEE International Conference on Robotics and Automation / IEEE Robotics & Automation Society, IEEE</i> (pp. 9837–9843). https://doi.org/10.1109/ICRA48891.2023.10160722</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191069
-
dc.description.abstract
After many researchers observed fruitfulness from the recent diffusion probabilistic model, its effectiveness in image generation is actively studied these days. In this paper, our objective is to evaluate the potential of diffusion probabilistic models for 3D human motion-related tasks. To this end, this pa-per presents a study of employing diffusion probabilistic models to predict future 3D human motion(s) from the previously observed motion. Based on the Human 3.6M and HumanEva-I datasets, our results show that diffusion probabilistic models are competitive for both single (deterministic) and multiple (stochastic) 3D motion prediction tasks, after finishing a single training process. In addition, we find out that diffusion probabilistic models can offer an attractive compromise, since they can strike the right balance between the likelihood and diversity of the predicted future motions. Our code is publicly available on the project website: https://sites.google.com/view/diffusion-motion-prediction.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.subject
Human Motion Generation
en
dc.subject
Generative Models
en
dc.title
Can We Use Diffusion Probabilistic Models for 3D Motion Prediction?
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Ulsan National Institute of Science and Technology, Korea (the Republic of)
-
dc.relation.isbn
979-8-3503-2365-8
-
dc.description.startpage
9837
-
dc.description.endpage
9843
-
dc.relation.grantno
H2020-MSCA-ITN-2019
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
ICRA 2023 : conference proceedings : 29th May-2nd June 2023, ExCeL London : IEEE International Conference on Robotics and Automation / IEEE Robotics & Automation Society, IEEE
-
tuw.project.title
PErsonalized Robotics as SErvice Oriented applications
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E384-03 - Forschungsbereich Autonomous Systems
-
tuw.publisher.doi
10.1109/ICRA48891.2023.10160722
-
dc.description.numberOfPages
7
-
tuw.author.orcid
0000-0003-1897-7664
-
tuw.event.name
2023 IEEE International Conference on Robotics and Automation (ICRA)
en
tuw.event.startdate
29-05-2023
-
tuw.event.enddate
02-06-2023
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
London
-
tuw.event.country
GB
-
tuw.event.presenter
Ahn, Hyemin
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.grantfulltext
restricted
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
crisitem.project.funder
European Commission
-
crisitem.project.grantno
H2020-MSCA-ITN-2019
-
crisitem.author.dept
Ulsan National Institute of Science and Technology