<div class="csl-bib-body">
<div class="csl-entry">Stippel, C., Schwendinger, B., Kammerhofer, M., Hoch, R., Kaindl, H., & Sauter, T. (2023). Towards Optimized Schedules for Charging Electric Vehicles on Austrian Highways using Genetic Algorithms. In <i>GECCO ’23 Companion: Proceedings of the Companion Conference on Genetic and Evolutionary Computation</i> (pp. 767–770). Association for Computing Machinery. https://doi.org/10.1145/3583133.3590754</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191074
-
dc.description.abstract
Efficient charging of electric vehicles (EVs) on highways is important for ensuring e-mobility because of the comparably limited range of EVs and the potentially very long charging times during longer trips. For reducing the carbon footprint of EVs, matching demand with availability of renewable energy matters, i.e., the latter should be used when available. Hence, we opt for dynamic ‘anytime’ optimization of the allocation of EVs to charging sites preferably at time slots where renewable energy is predicted to be available, while taking into account charging properties of batteries as well. This paper outlines a genetic algorithm approach for this optimization task, which takes these objectives into account as well as charging station availability and the number of yet unscheduled EVs. Our algorithm integrates with Eclipse SUMO (Simulation of Urban MObility) for simulating the real-world environment. The proposed algorithm operates on a real highway network (the one in Austria) and offers efficient and sustainable solutions for reducing the environmental impact of EVs.
en
dc.description.sponsorship
Klima- und Energiefonds
-
dc.language.iso
en
-
dc.subject
Genetic algorithms
en
dc.subject
Metaheuristics
en
dc.subject
Time-tabling and scheduling
en
dc.subject
Transportation
en
dc.title
Towards Optimized Schedules for Charging Electric Vehicles on Austrian Highways using Genetic Algorithms
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Österreich
-
dc.contributor.affiliation
TU Wien, Österreich
-
dc.contributor.affiliation
Universität für Weiterbildung Krems, Austria
-
dc.relation.isbn
9798400701207
-
dc.description.startpage
767
-
dc.description.endpage
770
-
dc.relation.grantno
885026
-
dc.type.category
Poster Contribution
-
tuw.booktitle
GECCO '23 Companion: Proceedings of the Companion Conference on Genetic and Evolutionary Computation
-
tuw.relation.publisher
Association for Computing Machinery
-
tuw.relation.publisherplace
New York
-
tuw.project.title
Dynamically Optimizing the Allocation of e‐cars to Charging Sites
-
tuw.researchTopic.id
A4
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical Methods in Economics
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E384-01 - Forschungsbereich Software-intensive Systems
-
tuw.publisher.doi
10.1145/3583133.3590754
-
dc.description.numberOfPages
4
-
tuw.author.orcid
0000-0003-0482-902X
-
tuw.author.orcid
0000-0003-3315-8114
-
tuw.author.orcid
0009-0008-4052-5414
-
tuw.author.orcid
0000-0002-8131-1091
-
tuw.author.orcid
0000-0002-1133-0529
-
tuw.author.orcid
0000-0003-1559-8394
-
tuw.event.name
GECCO 2023: Genetic and Evolutionary Computation Conference
en
tuw.event.startdate
15-07-2023
-
tuw.event.enddate
19-07-2023
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Lisbon
-
tuw.event.country
PT
-
tuw.event.presenter
Stippel, Christian
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference poster
-
item.openairecristype
http://purl.org/coar/resource_type/c_6670
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
E384-01 - Forschungsbereich Software-intensive Systems
-
crisitem.author.dept
TU Wien
-
crisitem.author.dept
E384-01 - Forschungsbereich Software-intensive Systems
-
crisitem.author.dept
E384-01 - Forschungsbereich Software-intensive Systems
-
crisitem.author.dept
E384 - Institut für Computertechnik
-
crisitem.author.orcid
0000-0003-3315-8114
-
crisitem.author.orcid
0009-0008-4052-5414
-
crisitem.author.orcid
0000-0003-1559-8394
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E384 - Institut für Computertechnik
-
crisitem.author.parentorg
E384 - Institut für Computertechnik
-
crisitem.author.parentorg
E384 - Institut für Computertechnik
-
crisitem.author.parentorg
E350 - Fakultät für Elektrotechnik und Informationstechnik