<div class="csl-bib-body">
<div class="csl-entry">Eiter, T., Geibinger, T., Higuera, N., & Oetsch, J. (2023). A Logic-based Approach to Contrastive Explainability for Neurosymbolic Visual Question Answering. In E. Elkind (Ed.), <i>Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence</i> (pp. 3668–3676). International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2023/408</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191140
-
dc.description.abstract
Visual Question Answering (VQA) is a well-known problem for which deep-learning is key. This poses a challenge for explaining answers to questions, the more if advanced notions like contrastive explanations (CEs) should be provided. The latter explain why an answer has been reached in contrast to a different one and are attractive as they focus on reasons necessary to flip a query answer. We present a CE framework for VQA that uses a neurosymbolic VQA architecture which disentangles perception from reasoning. Once the reasoning part is provided as logical theory, we use answer-set programming, in which CE generation can be framed as an abduction problem. We validate our approach on the CLEVR dataset, which we extend by more sophisticated questions to further demonstrate the robustness of the modular architecture. While we achieve top performance compared to related approaches, we can also produce CEs for explanation, model debugging, and validation tasks, showing the versatility of the declarative approach to reasoning.
en
dc.language.iso
en
-
dc.subject
Machine Learning
en
dc.subject
Neuro-symbolic Methods
en
dc.subject
Explainable/Interpretable machine learning
en
dc.title
A Logic-based Approach to Contrastive Explainability for Neurosymbolic Visual Question Answering
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.relation.publication
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence
-
dc.relation.isbn
978-1-956792-03-4
-
dc.description.startpage
3668
-
dc.description.endpage
3676
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)
-
tuw.peerreviewed
true
-
tuw.relation.publisher
International Joint Conferences on Artificial Intelligence
-
tuw.researchTopic.id
I1
-
tuw.researchTopic.name
Logic and Computation
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E192-03 - Forschungsbereich Knowledge Based Systems
-
tuw.publisher.doi
10.24963/ijcai.2023/408
-
dc.description.numberOfPages
9
-
tuw.author.orcid
0000-0001-6003-6345
-
tuw.author.orcid
0000-0002-0856-7162
-
tuw.event.name
Thirty-Second International Joint Conference on Artificial Intelligence
-
tuw.event.startdate
19-08-2023
-
tuw.event.enddate
25-08-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Macau
-
tuw.event.country
CN
-
tuw.event.presenter
Higuera, Nelson
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
80
-
wb.sciencebranch.value
20
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E192-03 - Forschungsbereich Knowledge Based Systems
-
crisitem.author.dept
E192-03 - Forschungsbereich Knowledge Based Systems
-
crisitem.author.dept
E192-03 - Forschungsbereich Knowledge Based Systems
-
crisitem.author.dept
E192-03 - Forschungsbereich Knowledge Based Systems