<div class="csl-bib-body">
<div class="csl-entry">Peer, M., & Sablatnig, R. (2023). Feature Mixing for Writer Retrieval and Identification on Papyri Fragments. In <i>HIP ’23 : Proceedings of the 7th International Workshop on Historical Document Imaging and Processing</i> (pp. 31–36). https://doi.org/10.1145/3604951.3605515</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191158
-
dc.description.abstract
This paper proposes a deep-learning-based approach to writer retrieval and identification for papyri, with a focus on identifying fragments associated with a specific writer and those corresponding to the same image. We present a novel neural network architecture that combines a residual backbone with a feature mixing stage to improve retrieval performance, and the final descriptor is derived from a projection layer. The methodology is evaluated on two benchmarks: PapyRow, where we achieve a mAP of 26.6 % and 24.9 % on writer and page retrieval, and HisFragIR20, showing state-of-the-art performance (44.0 % and 29.3 % mAP). Furthermore, our network has an accuracy of 28.7 % for writer identification. Additionally, we conduct experiments on the influence of two binarization techniques on fragments and show that binarizing does not enhance performance. Our code and models are available to the community at https://github.com/marco-peer/hip23.
en
dc.language.iso
en
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Ancient Papyri
en
dc.subject
Document Analysis
en
dc.subject
Historical Documents
en
dc.subject
Writer Identification
en
dc.subject
Writer Retrieval
en
dc.title
Feature Mixing for Writer Retrieval and Identification on Papyri Fragments