<div class="csl-bib-body">
<div class="csl-entry">Bayerl, A., Keglevic, M., Wödlinger, M. G., & Sablatnig, R. (2023). Impact of Learned Domain Specific Compression on Satellite Image Object Classification. In <i>Proceedings of the 26th Computer Vision Winter Workshop (CVWW 2023)</i>. 26th Computer Vision Winter Workshop (CVWW) 2023, Krems an der Donau, Austria. CEUR-WS.org. https://doi.org/10.34726/5331</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191164
-
dc.identifier.uri
https://doi.org/10.34726/5331
-
dc.description.abstract
This paper proposes a methodology for learned compression for satellite imagery. The proposed method utilizes an image patching and stitching approach to address the high resolution of satellite images. We present rate-distortion metrics showing that this methodology outperforms JPEG2000, currently used on satellites. In addition, we demonstrate that using satellite images to train the compression model leads to superior performance compared to using non-domain-specific data. Furthermore, a detailed evaluation of the compression algorithm in a downstream classification task is conducted. The results demonstrate that 77.83% classification accuracy is still achievable for highly compressed images with a bitrate of 0.02 BPPs when the classification model is trained on images from the same compression model. The downstream classification task evaluation highlights that the performance of the classification model is highly dependent on the type of compression applied to the training data. When trained with learned compression images, the model can only classify images with an acceptable level of accuracy (>77%) if they had also undergone learned compression. Likewise, a model trained with JPEG images can only classify JPEG images with acceptable accuracy (>89%).
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.relation.ispartofseries
CEUR Workshop Proceedings
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
Learned Image Compression
en
dc.subject
Satellite Imagery
en
dc.subject
Remote Sensing
en
dc.subject
Image Classification
en
dc.subject
Machine Learning
en
dc.title
Impact of Learned Domain Specific Compression on Satellite Image Object Classification
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/5331
-
dc.relation.grantno
GA 965502
-
dc.rights.holder
2023 The Authors
-
dc.type.category
Full-Paper Contribution
-
dc.relation.eissn
1613-0073
-
tuw.booktitle
Proceedings of the 26th Computer Vision Winter Workshop (CVWW 2023)
-
tuw.container.volume
3349
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
CEUR Workshop Proceedings
-
tuw.relation.publisher
CEUR-WS.org
-
tuw.book.chapter
3349
-
tuw.project.title
KI-basierte Videokomprimierung für neue Technologien
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E193 - Institut für Visual Computing and Human-Centered Technology
-
dc.identifier.libraryid
AC17204973
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0002-0505-0395
-
tuw.author.orcid
0000-0002-4644-2723
-
tuw.author.orcid
0000-0003-4195-1593
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.event.name
26th Computer Vision Winter Workshop (CVWW) 2023
en
tuw.event.startdate
15-02-2023
-
tuw.event.enddate
17-02-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Krems an der Donau
-
tuw.event.country
AT
-
tuw.event.presenter
Bayerl, Alexander
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.dept
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.orcid
0000-0002-0505-0395
-
crisitem.author.orcid
0000-0002-4644-2723
-
crisitem.author.orcid
0000-0003-4195-1593
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology