<div class="csl-bib-body">
<div class="csl-entry">Kolb, T. E., Nalis-Neuner, I., & Neidhardt, J. (2023). Like a Skilled DJ - an Expert Study on News Recommendations Beyond Accuracy. In B. Kille (Ed.), <i>Proceedings of the International Workshop on News Recommendation and Analytics co-located with the 2023 ACM Conference on Recommender Systems (RecSys 2023)</i>. CEUR-WS.org. https://doi.org/10.34726/5332</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191170
-
dc.identifier.uri
https://doi.org/10.34726/5332
-
dc.description.abstract
In the past, recommender systems were primarily focused on optimizing accuracy. However, in recent years, there has been an increasing awareness that considerations beyond accuracy are necessary. The definition of what constitutes a good recommendation is a crucial issue. The most precise prediction may not always be the recommendation that satisfies the user best. This study offers a comprehensive investigation into the present advancements within the realm of beyond-accuracy measurements, especially the metrics diversity, serendipity, and novelty. Collaborative efforts between algorithmic models and domain experts can enrich recommendation quality, particularly in labeling and categorizing content. To address this, we present a study conducted by experts in the news domain. This study provides new insights into the multifaceted nature of this challenge. Employing an interdisciplinary approach, we underscore the significance of constructing a system that revolves around the user. Recent discussions about algorithmic content filtering and its societal implications underscore the importance of maintaining human involvement in the decision-making loop.
en
dc.description.sponsorship
Christian Doppler Forschungsgesellschaft
-
dc.language.iso
en
-
dc.relation.ispartofseries
CEUR Workshop Proceedings
-
dc.rights.uri
http://creativecommons.org/licenses/by/4.0/
-
dc.subject
recommender systems
en
dc.subject
beyond-accuracy measures
en
dc.subject
domain-expert study
en
dc.title
Like a Skilled DJ - an Expert Study on News Recommendations Beyond Accuracy
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Creative Commons Namensnennung 4.0 International
de
dc.rights.license
Creative Commons Attribution 4.0 International
en
dc.identifier.doi
10.34726/5332
-
dc.contributor.editoraffiliation
Norwegian University of Science and Technology, Norway
Proceedings of the International Workshop on News Recommendation and Analytics co-located with the 2023 ACM Conference on Recommender Systems (RecSys 2023)
-
tuw.container.volume
3561
-
tuw.peerreviewed
true
-
tuw.book.ispartofseries
CEUR Workshop Proceedings
-
tuw.relation.publisher
CEUR-WS.org
-
tuw.project.title
Christian Doppler Labor für Weiterentwicklung des State-of-the-Art von Recommender-Systemen in mehreren Domänen
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
dc.identifier.libraryid
AC17205275
-
dc.description.numberOfPages
12
-
tuw.author.orcid
0000-0002-2340-0854
-
tuw.author.orcid
0000-0001-7184-1841
-
dc.rights.identifier
CC BY 4.0
de
dc.rights.identifier
CC BY 4.0
en
tuw.editor.orcid
0000-0002-3206-5154
-
tuw.event.name
11th International Workshop on News Recommendation and Analytics in conjuction with ACM RecSys 2023
en
tuw.event.startdate
18-09-2023
-
tuw.event.enddate
22-09-2023
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Singapore
-
tuw.event.country
SG
-
tuw.event.presenter
Kolb, Thomas Elmar
-
tuw.event.presenter
Nalis-Neuner, Irina
-
tuw.presentation.online
Online
-
tuw.event.track
Single Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.grantfulltext
open
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openaccessfulltext
Open Access
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
item.fulltext
with Fulltext
-
item.mimetype
application/pdf
-
item.languageiso639-1
en
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0002-2340-0854
-
crisitem.author.orcid
0000-0001-7184-1841
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering