<div class="csl-bib-body">
<div class="csl-entry">Knees, P., Schedl, M., Ferwerda, B., & Laplante, A. (2023). Listener awareness in music recommender systems: directions and current trends. In M. Augstein, E. Herder, & W. Wörndl (Eds.), <i>Personalized Human-Computer Interaction</i> (pp. 279–312). DeGruyter Oldenbourg. https://doi.org/10.1515/9783110988567-011</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191171
-
dc.description.abstract
Music recommender systems are a widely adopted application of personalized systems and interfaces. By tracking the listening activity of their users and building preference profiles, a user can be given recommendations based on the preference profiles of all users (collaborative filtering), characteristics of the music listened to (contentbased methods), meta-data and relational data (knowledge-based methods; sometimes also considered content-based methods) or a mixture of these with other features (hybrid methods). In this chapter, we focus on the listener's aspects of music recommender systems. We discuss different factors influencing relevance for recommendation on both the listener's and the music's side and categorize existing work. In more detail, we then review aspects of (i) listener background in terms of individual, i. e., personality traits and demographic characteristics, and cultural features, i. e., societal and environmental characteristics, (ii) listener context, in particular modeling dynamic properties and situational listening behavior and (iii) listener intention, in particular by studying music information behavior, i. e., how people seek, find and use music information. This is followed by a discussion of user-centric evaluation strategies for music recommender systems. We conclude the chapter with a reflection on current barriers, by pointing out current and longer-term limitations of existing approaches and outlining strategies for overcoming these.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.subject
Music recommender systems
en
dc.subject
Personalization
en
dc.subject
User context
en
dc.subject
User intent
en
dc.subject
User modeling
en
dc.title
Listener awareness in music recommender systems: directions and current trends
en
dc.type
Book Contribution
en
dc.type
Buchbeitrag
de
dc.contributor.affiliation
Johannes Kepler University of Linz, Austria
-
dc.contributor.affiliation
Jönköping University, Sweden
-
dc.contributor.affiliation
Université de Montréal, Canada
-
dc.relation.isbn
9783110988567
-
dc.relation.doi
10.1515/9783110988567
-
dc.description.startpage
279
-
dc.description.endpage
312
-
dc.relation.grantno
P 33526-N
-
dc.type.category
Edited Volume Contribution
-
tuw.booktitle
Personalized Human-Computer Interaction
-
tuw.book.ispartofseries
De Gruyter Textbook
-
tuw.relation.publisher
DeGruyter Oldenbourg
-
tuw.relation.publisherplace
Berlin, Boston
-
tuw.book.chapter
11
-
tuw.project.title
Empfehlungssystem & Nutzer: Hin zu gegenseitigem Verständnis
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publisher.doi
10.1515/9783110988567-011
-
dc.description.numberOfPages
34
-
tuw.author.orcid
0000-0003-3906-1292
-
tuw.author.orcid
0000-0003-1706-3406
-
tuw.author.orcid
0000-0003-4344-9986
-
tuw.author.orcid
0000-0002-0480-0182
-
tuw.editor.orcid
0000-0002-7901-3765
-
tuw.editor.orcid
0000-0003-0107-299X
-
tuw.editor.orcid
0000-0003-2972-5817
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.openairecristype
http://purl.org/coar/resource_type/c_3248
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairetype
book part
-
item.cerifentitytype
Publications
-
crisitem.project.funder
FWF - Österr. Wissenschaftsfonds
-
crisitem.project.grantno
P 33526-N
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E185 - Institut für Computersprachen
-
crisitem.author.dept
Jönköping University
-
crisitem.author.dept
Universit� de Montr�al
-
crisitem.author.orcid
0000-0003-3906-1292
-
crisitem.author.orcid
0000-0003-4344-9986
-
crisitem.author.orcid
0000-0002-0480-0182
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering