<div class="csl-bib-body">
<div class="csl-entry">Bilik, S., Zemcik, T., Kratochvila, L., Ricanek, D., Richter, M., Zambanini, S., & Horak, K. (2024). Machine learning and computer vision techniques in continuous beehive monitoring applications: A survey. <i>Computers and Electronics in Agriculture</i>, <i>217</i>, Article 108560. https://doi.org/10.1016/j.compag.2023.108560</div>
</div>
-
dc.identifier.issn
0168-1699
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191307
-
dc.description.abstract
The wide use and availability of machine learning and computer vision techniques allows developing relatively complex monitoring systems in multiple domains. Besides the traditional industrial segments, new applications appear not only in biology and agriculture, where they may be employed to detect infection, parasites, and weeds, but also in automated monitoring and early warning systems. This trend clearly reflects the introduction of easily accessible hardware and development kits, such as the Arduino or RaspberryPi family. In this article, more than 50 research projects focusing on automated beehive monitoring methods using computer vision procedures are referenced; most of the approaches then facilitate pollen and Varroa mite detection together with bee traffic monitoring. Such systems could also find use in monitoring and inspecting the health state of honeybee colonies, exhibiting a potential for identifying dangerous conditions before the situation becomes critical and improving periodical bee colony inspection planning to markedly reduce the costs. By extension, our article proposes an analysis of the research trends in the given application field and outlines possible
development directions. The entire project has also targeted veterinary and apidology professionals and experts, who might benefit from a matter-of-fact interpretation of machine learning and its capabilities; thus, each family of techniques is preceded by a brief theoretical introduction and motivation related to the relevant base method. The article can inspire other researchers to employ machine learning techniques in specific beehive monitoring applications.
en
dc.language.iso
en
-
dc.publisher
ELSEVIER SCI LTD
-
dc.relation.ispartof
Computers and Electronics in Agriculture
-
dc.subject
Pollen detection
en
dc.subject
Varroasis detection
en
dc.subject
Bee traffic inspection
en
dc.subject
Bee inspection
en
dc.title
Machine learning and computer vision techniques in continuous beehive monitoring applications: A survey
en
dc.type
Article
en
dc.type
Artikel
de
dc.type.category
Review Article
-
tuw.container.volume
217
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchTopic.id
I5
-
tuw.researchTopic.name
Visual Computing and Human-Centered Technology
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
Computers and Electronics in Agriculture
-
tuw.publication.orgunit
E193-01 - Forschungsbereich Computer Vision
-
tuw.publisher.doi
10.1016/j.compag.2023.108560
-
dc.date.onlinefirst
2023-12-23
-
dc.identifier.articleid
108560
-
dc.identifier.eissn
1872-7107
-
dc.description.numberOfPages
18
-
tuw.author.orcid
0000-0001-8797-7700
-
tuw.author.orcid
0000-0003-4363-4313
-
tuw.author.orcid
0000-0001-8425-323X
-
tuw.author.orcid
0000-0001-5031-2481
-
tuw.author.orcid
0000-0002-9791-5957
-
tuw.author.orcid
0000-0002-3459-8122
-
tuw.author.orcid
0000-0002-2280-3029
-
wb.sci
true
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.cerifentitytype
Publications
-
item.openairetype
review article
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_dcae04bc
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
crisitem.author.dept
E193-01 - Forschungsbereich Computer Vision
-
crisitem.author.orcid
0000-0001-8797-7700
-
crisitem.author.orcid
0000-0003-4363-4313
-
crisitem.author.orcid
0000-0001-8425-323X
-
crisitem.author.orcid
0000-0001-5031-2481
-
crisitem.author.orcid
0000-0002-9791-5957
-
crisitem.author.orcid
0000-0002-3459-8122
-
crisitem.author.orcid
0000-0002-2280-3029
-
crisitem.author.parentorg
E193 - Institut für Visual Computing and Human-Centered Technology