<div class="csl-bib-body">
<div class="csl-entry">Wess, M., Schöberl, J., Kapidani, B., & Codecasa, L. (2023, July 5). <i>High-order cell methods for time-dependent Maxwell equations</i> [Conference Presentation]. SUPRENUM PDE 2023, Lausanne, Switzerland. http://hdl.handle.net/20.500.12708/191454</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191454
-
dc.description.abstract
We are concerned with the efficient numerical approximation of solutions of the time-domain Maxwell system. Methods like the classical finite-difference time-domain method or finite integration techniques rely on the approximation of the electric and the magnetic field on two interlaced (Cartesian) grids respectively. Our method expands this idea to general triangular meshes by defining a dual grid using the barycentric subdivision of the primal mesh, resulting in a decomposition of each mesh into quadrilaterals. Contrary to previous approaches we use a Lagrangian polynomial basis with respect to tensor product integration points on the unit square which are subsequently re-mapped to the quadrilaterals of the reference element. This approach also provides a generalization of the method to three space dimensions and enables us to use lumped mass matrices which significantly increases the computational efficiency of our method. Numerical experiments underline the facts that the resulting algorithm provides converging, spurious-free solutions and is efficient, compared to competing methods.
en
dc.language.iso
en
-
dc.subject
time-domain Maxwell equations
en
dc.subject
explicit time-stepping
en
dc.subject
DG
en
dc.title
High-order cell methods for time-dependent Maxwell equations
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.contributor.affiliation
École Polytechnique Fédérale de Lausanne, Switzerland
-
dc.contributor.affiliation
Politecnico di Milano, Italy
-
dc.type.category
Conference Presentation
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
tuw.author.orcid
0000-0001-7369-4400
-
tuw.event.name
SUPRENUM PDE 2023
en
tuw.event.startdate
03-07-2023
-
tuw.event.enddate
07-07-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Lausanne
-
tuw.event.country
CH
-
tuw.event.institution
EPFL
-
tuw.event.presenter
Wess, Markus
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
conference paper not in proceedings
-
item.grantfulltext
none
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cp
-
item.cerifentitytype
Publications
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E101-03-1 - Forschungsgruppe Computational Mathematics in Engineering
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.dept
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.dept
Politecnico di Milano
-
crisitem.author.orcid
0000-0001-6323-0821
-
crisitem.author.orcid
0000-0002-1250-5087
-
crisitem.author.parentorg
E101-03 - Forschungsbereich Scientific Computing and Modelling
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing
-
crisitem.author.parentorg
E101 - Institut für Analysis und Scientific Computing