<div class="csl-bib-body">
<div class="csl-entry">Hackl, B., Panholzer, A., & Wagner, S. (2023). The Uncover Process for Random Labeled Trees. <i>La Matematica</i>, <i>2</i>(4), 861–892. https://doi.org/10.1007/s44007-023-00060-3</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191473
-
dc.description.abstract
We consider the process of uncovering the vertices of a random labeled tree according to their labels. First, a labeled tree with n vertices is generated uniformly at random. Thereafter, the vertices are uncovered one by one, in order of their labels.With each new vertex, all edges to previously uncovered vertices are uncovered as well. In this way, one obtains a growing sequence of forests. Three particular aspects of this process are studied in this work: first the number of edges, which we prove to converge to a stochastic process akin to a Brownian bridge after appropriate rescaling; second, the connected component of a fixed vertex, for which different phases are identified and limiting distributions determined in each phase; and lastly, the largest connected component, for which we also observe a phase transition.
en
dc.language.iso
en
-
dc.publisher
Springer Science+Business Media LLC
-
dc.relation.ispartof
La Matematica
-
dc.subject
Labeled tree
en
dc.subject
uncover process
en
dc.subject
functional central limit theorem
en
dc.subject
limiting distribution
en
dc.subject
phase transition
en
dc.title
The Uncover Process for Random Labeled Trees
en
dc.type
Article
en
dc.type
Artikel
de
dc.description.startpage
861
-
dc.description.endpage
892
-
dc.type.category
Original Research Article
-
tuw.container.volume
2
-
tuw.container.issue
4
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.publication.invited
invited
-
tuw.researchTopic.id
A3
-
tuw.researchTopic.name
Fundamental Mathematics Research
-
tuw.researchTopic.value
100
-
dcterms.isPartOf.title
La Matematica
-
tuw.publication.orgunit
E104-05 - Forschungsbereich Kombinatorik und Algorithmen
-
tuw.publisher.doi
10.1007/s44007-023-00060-3
-
dc.date.onlinefirst
2023-10-02
-
dc.identifier.eissn
2730-9657
-
dc.description.numberOfPages
32
-
tuw.author.orcid
0000-0003-2998-9599
-
tuw.author.orcid
0000-0003-2813-3457
-
tuw.author.orcid
0000-0001-5533-2764
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
100
-
item.cerifentitytype
Publications
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.openairetype
research article
-
crisitem.author.dept
E104-05 - Forschungsbereich Kombinatorik und Algorithmen
-
crisitem.author.orcid
0000-0003-2998-9599
-
crisitem.author.orcid
0000-0001-5533-2764
-
crisitem.author.parentorg
E104 - Institut für Diskrete Mathematik und Geometrie