<div class="csl-bib-body">
<div class="csl-entry">Maduranga, M. W. P., Kalansooriya, P., Retscher, G., & Gabela Majic, J. (2023). Machine Learning-Based Indoor Localization System to Support 5G Location-Based Services. In <i>2023 7th SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI)</i> (pp. 1–6). IEEE. https://doi.org/10.1109/SLAAI-ICAI59257.2023.10365026</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191490
-
dc.description.abstract
Indoor positioning is expected to play a vital role in future 5G networks, as it enables a wide range of location-based services such as indoor navigation, inventory monitoring, store locators, and anti-theft prevention. Accurate and reliable positioning information is crucial for many 5G applications, and it has been identified as a key enabler by the Third Generation Partnership Project (3GPP), which recently standardized advanced positioning methods in Release 15 and 16. This work focuses on the feasibility of using Machine Learning (ML) algorithms for Long Range Wide Area (LoRa)-based wireless indoor positioning systems, where LoRa-enabled sensor nodes can smoothly access 5G networks. The
study trains different ML classifiers, such as Logistic Regression, Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Linear Discriminant Analysis (LDA), and Gaussian Naïve Basis, on Received Signal Strength Indicator (RSSI) values received from three different anchor nodes in an experimental setup. The experimental results demonstrate that KNN provides over 98% accuracy, 0.9831 precision, 0.9841 recall, and 0.9835 F1 score in estimating the location. This high level of accuracy and reliability makes ML algorithms a promising solution for indoor positioning systems in 5G networks, opening up new opportunities for location-based services such as roadside assistance in indoor scenarios, taxi-.hailing, and service locators.
en
dc.language.iso
en
-
dc.subject
Indoor localization
en
dc.subject
5G
en
dc.subject
Machine Learning
en
dc.subject
Location-based Services
en
dc.title
Machine Learning-Based Indoor Localization System to Support 5G Location-Based Services
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
General Sir John Kotelawala Defence University, Sri Lanka
-
dc.contributor.affiliation
General Sir John Kotelawala Defence University, Sri Lanka
-
dc.relation.isbn
979-8-3503-1926-2
-
dc.description.startpage
1
-
dc.description.endpage
6
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
2023 7th SLAAI International Conference on Artificial Intelligence (SLAAI-ICAI)
-
tuw.relation.publisher
IEEE
-
tuw.relation.publisherplace
Piscataway
-
tuw.publication.invited
invited
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E120-05 - Forschungsbereich Ingenieurgeodäsie
-
tuw.publisher.doi
10.1109/SLAAI-ICAI59257.2023.10365026
-
dc.description.numberOfPages
6
-
tuw.author.orcid
0000-0002-5483-0240
-
tuw.author.orcid
0000-0001-6019-1548
-
tuw.author.orcid
0000-0002-0186-5917
-
tuw.event.name
IEEE 7th SLAAI - International Conference on Artificial Intelligence (SLAAI-ICAI-2023)
en
tuw.event.startdate
23-11-2023
-
tuw.event.enddate
24-11-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wayamba
-
tuw.event.country
LK
-
tuw.event.presenter
Maduranga, Madduma Wellalage Pasan
-
wb.sciencebranch
Geodäsie, Vermessungswesen
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
2074
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
50
-
wb.sciencebranch.value
50
-
item.cerifentitytype
Publications
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openairetype
conference paper
-
crisitem.author.dept
General Sir John Kotelawala Defence University, Sri Lanka
-
crisitem.author.dept
General Sir John Kotelawala Defence University, Sri Lanka