<div class="csl-bib-body">
<div class="csl-entry">Chiang, Y.-R., Hellmich, C., & Thurner, P. (2023, September 20). <i>A novel data-driven constitutive model for individual collagen fibrils based on hypoelasticity</i> [Conference Presentation]. X International Conference on Computational Bioenginneering (ICCB 2023), Wien, Austria.</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191503
-
dc.description.abstract
Collagens are the primary constituents at the lowest hierarchy of biological tissues (Orgel et al., 2006). Abnor-mality in the stiffness of collagen fibrils may result in severe cardiovascular diseases, such as atherosclerotic plaques (Akyildiz et al., 2017). In this context it is an open quest to describe the biomechanical properties of collagen fibrils by a constitutive model.
Hyperelastic models are a powerful approach to depict the nonlinear mechanical response of biological materials (Holzapfel & Ogden, 2020). However, hyperelasticity fails to describe non-affine transformation and inherent rate-dependency observed in soft tissues (Morin et al., 2021). In this study, a data-driven hypoelastic model for individual collagen fibrils is attempted to be built within the framework of continuum theory, which represents a more general class of elastic bodies capable of in-depth discussion on fiber-rearrangement and rate-dependent elastic behavior in spatial configuration. The experimental data are provided by a previous study of atomic force microscopy (AFM) uniaxial tensile tests on individual collagen fibrils from rat tail tendons (RTT) in low strain regimes (Andriotis et al., 2018). Owing to the large aspect ratio of the collagen fibrils and the rotation-al-free tensile tests, one can infer the assumptions on linear displacement field and zero spin rate for further stress- and strain-rate calculation. Hence, the resulting hypoelasticity tensor is defined by the Cauchy stress-rate and strain-rate field, which can be derived from the force-displacement data of AFM tensile tests. With the absent knowledge on the cross-sectional area of the deformed collagen fibrils, at the current stage this research focuses on the analysis of the measured displacement, strain and force rate as well as the computation on the one-dimensional extensional stiffness.
Results show that the measured displacement rates of the collagen fibrils increase with the level of displacement, and deviate from the displacement rates originally set in the experiment, being up to 1.72-fold higher. Despite the low strain, nonlinear extensional stiffness of collagen fibrils is still observed. As both the force rate and the ex-tensional stiffness reach a plateau at the strain level of approximately 2.6 from each experiment, it is suggested that the tensile response of the collagen fibrils is approaching the maximum stiffness in the first deformation regime (Svensson et al., 2013). The force-displacement profiles with respect to different set displacement rates may indicate viscoelastic behavior of collagen fibrils. Such that, the viscoelastic contribution can be supple-mented into the developing hypoelastic model with the addition of a dissipation function (Rajagopal & Srinivasa, 2011). Subsequently, this research will proceed in the estimation of the three-dimensional hypoelasticity tensor with the inclusion of microstructure.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.subject
Continuum Mechanics
en
dc.subject
Biomechanics
en
dc.subject
Collagen Fibrils
en
dc.title
A novel data-driven constitutive model for individual collagen fibrils based on hypoelasticity
en
dc.type
Presentation
en
dc.type
Vortrag
de
dc.relation.grantno
101034277
-
dc.type.category
Conference Presentation
-
tuw.project.title
Technik für Biowissenschaften Doktoratsstudium
-
tuw.researchTopic.id
M6
-
tuw.researchTopic.id
C1
-
tuw.researchTopic.name
Biological and Bioactive Materials
-
tuw.researchTopic.name
Computational Materials Science
-
tuw.researchTopic.value
30
-
tuw.researchTopic.value
70
-
tuw.linking
https://iccb2023.conf.tuwien.ac.at/
-
tuw.publication.orgunit
E317 - Institut für Leichtbau und Struktur-Biomechanik
-
tuw.publication.orgunit
E202 - Institut für Mechanik der Werkstoffe und Strukturen
-
tuw.publication.orgunit
E056 - Doctoral School
-
tuw.author.orcid
0000-0001-7588-9041
-
tuw.event.name
X International Conference on Computational Bioenginneering (ICCB 2023)
en
tuw.event.startdate
20-09-2023
-
tuw.event.enddate
22-09-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.institution
TU Wien
-
tuw.event.presenter
Chiang, You-Rong
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Maschinenbau
-
wb.sciencebranch
Biologie
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
2030
-
wb.sciencebranch.oefos
1060
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
30
-
wb.sciencebranch.value
40
-
wb.sciencebranch.value
30
-
item.languageiso639-1
en
-
item.openairetype
conference paper not in proceedings
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_18cp
-
crisitem.author.dept
E317-02 - Forschungsbereich Biomechanik
-
crisitem.author.dept
E202 - Institut für Mechanik der Werkstoffe und Strukturen
-
crisitem.author.dept
E317 - Institut für Leichtbau und Struktur-Biomechanik
-
crisitem.author.orcid
0000-0001-7588-9041
-
crisitem.author.parentorg
E317 - Institut für Leichtbau und Struktur-Biomechanik
-
crisitem.author.parentorg
E200 - Fakultät für Bau- und Umweltingenieurwesen
-
crisitem.author.parentorg
E300 - Fakultät für Maschinenwesen und Betriebswissenschaften