<div class="csl-bib-body">
<div class="csl-entry">Sun, Y., Cao, Y., Hu, S., Avdeev, M., Wang, C.-W., Khmelevskyi, S., Ren, Y., Lapidus, S. H., Chen, X., Li, Q., Deng, J., Miao, J., Lin, K., Kuang, X., & Xing, X. (2023). Interplanar Ferromagnetism Enhanced Ultrawide Zero Thermal Expansion in Kagome Cubic Intermetallic (Zr,Nb)Fe₂. <i>Journal of the American Chemical Society</i>, <i>145</i>(31), 17096–17102. https://doi.org/10.1021/jacs.3c03160</div>
</div>
-
dc.identifier.issn
0002-7863
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191585
-
dc.description.abstract
A cubic metal exhibiting zero thermal expansion (ZTE) over a wide temperature window demonstrates significant applications in a broad range of advanced technologies but is extremely rare in nature. Here, enabled by high-temperature synthesis, we realize tunable thermal expansion via magnetic doping in the class of kagome cubic (Fd-3m) intermetallic (Zr,Nb)Fe2. A remarkably isotropic ZTE is achieved with a negligible coefficient of thermal expansion (+0.47 × 10-6 K-1) from 4 to 425 K, almost wider than most ZTE in metals available. A combined in situ magnetization, neutron powder diffraction, and hyperfine Mössbauer spectrum analysis reveals that interplanar ferromagnetic ordering contributes to a large magnetic compensation for normal lattice contraction upon cooling. Trace Fe-doping introduces extra magnetic exchange interactions that distinctly enhance the ferromagnetism and magnetic ordering temperature, thus engendering such an ultrawide ZTE. This work presents a promising ZTE in kagome metallic materials.
en
dc.language.iso
en
-
dc.publisher
AMER CHEMICAL SOC
-
dc.relation.ispartof
Journal of the American Chemical Society
-
dc.subject
thermal expansion
en
dc.subject
magnetic order
en
dc.subject
Invar effect
en
dc.subject
intermetallic
en
dc.subject
Rare-Earth alloys
en
dc.title
Interplanar Ferromagnetism Enhanced Ultrawide Zero Thermal Expansion in Kagome Cubic Intermetallic (Zr,Nb)Fe₂