<div class="csl-bib-body">
<div class="csl-entry">Archimbaud, A., Drmac, Z., Nordhausen, K., Radojičić, U., & Ruiz-Gazen, A. (2023). Numerical Considerations and a new implementation for invariant coordinate selection. <i>SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE</i>, <i>5</i>(1), 97–121. https://doi.org/10.1137/22M1498759</div>
</div>
-
dc.identifier.issn
2577-0187
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191618
-
dc.description.abstract
Invariant coordinate selection (ICS) is a multivariate data transformation and a dimension reduction method that can be useful in many different contexts. It can be used for outlier detection or cluster identification, and can be seen as an independent component or a non-Gaussian component analysis method. The usual implementation of ICS is based on a joint diagonalization of two scatter matrices, and may be numerically unstable in some ill-conditioned situations. We focus on one-step M-scatter matrices and propose a new implementation of ICS based on a pivoted QR factorization of the centered data set. This factorization avoids the direct computation of the scatter matrices and their inverse and brings numerical stability to the algorithm. Furthermore, the row and column pivoting leads to a rank revealing procedure that allows computation of ICS when the scatter matrices are not full rank. Several artificial and real data sets illustrate the interest of using the new implementation compared to the original one.
en
dc.description.sponsorship
FWF - Österr. Wissenschaftsfonds
-
dc.language.iso
en
-
dc.publisher
SIAM PUBLICATIONS
-
dc.relation.ispartof
SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE
-
dc.subject
dimension reduction
en
dc.subject
invariant coordinate selection
en
dc.subject
one-step M-estimators
en
dc.subject
QR factorization
en
dc.subject
scatter matrices
en
dc.subject
pivoting
en
dc.title
Numerical Considerations and a new implementation for invariant coordinate selection
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
University of Zagreb, Croatia
-
dc.contributor.affiliation
Université Toulouse-I-Capitole, France
-
dc.description.startpage
97
-
dc.description.endpage
121
-
dc.relation.grantno
I 5799-N
-
dc.type.category
Original Research Article
-
tuw.container.volume
5
-
tuw.container.issue
1
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.project.title
Generalisierte relative Daten und Robustheit in Bayes Räumen