<div class="csl-bib-body">
<div class="csl-entry">Patrick Indri, Tamara Drucks, & Gärtner, T. (2023). Can stochastic weight averaging improve generalization in private learning? In <i>ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale Machine Learning Models</i>. ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale Machine Learning Models, Kigali, Rwanda. https://doi.org/10.34726/5349</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191624
-
dc.identifier.uri
https://doi.org/10.34726/5349
-
dc.description
https://openreview.net/forum?id=cFg42_Sq0F
-
dc.description.abstract
We investigate stochastic weight averaging (SWA) for private learning in the context of generalization and model performance. Differentially private (DP) optimizers are known to suffer from reduced performance and high variance in comparison to non-private learning. However, the generalization properties of DP optimizers have not been studied much, in particular for large-scale machine learning models. SWA is variant of stochastic gradient descent (SGD) which averages the weights along the SGD trajectory. We consider a DP adaptation of SWA (DP-SWA) which incurs no additional privacy cost and has little computational overhead. For quadratic objective functions, we show that DP-SWA converges to the optimum at the same rate as non-private SGD, which implies convergence to zero for the excess risk. For non-convex objective functions, we observe throughout multiple experiments on standard benchmark datasets that averaging model weights improves generalization, model accuracy, and performance variance.
en
dc.language.iso
en
-
dc.rights.uri
http://rightsstatements.org/vocab/InC/1.0/
-
dc.subject
differential privacy
en
dc.subject
stochastic weight averaging
en
dc.subject
generalization
en
dc.title
Can stochastic weight averaging improve generalization in private learning?
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.rights.license
Urheberrechtsschutz
de
dc.rights.license
In Copyright
en
dc.identifier.doi
10.34726/5349
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale Machine Learning Models
-
tuw.peerreviewed
true
-
tuw.researchinfrastructure
Vienna Scientific Cluster
-
tuw.researchTopic.id
C4
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.name
Mathematical and Algorithmic Foundations
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
tuw.publication.orgunit
E194-06 - Forschungsbereich Machine Learning
-
dc.identifier.libraryid
AC17204546
-
dc.description.numberOfPages
12
-
tuw.author.orcid
0000-0001-5985-9213
-
dc.rights.identifier
Urheberrechtsschutz
de
dc.rights.identifier
In Copyright
en
tuw.event.name
ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale Machine Learning Models
en
tuw.event.startdate
04-05-2023
-
tuw.event.enddate
04-05-2023
-
tuw.event.online
Hybrid
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Kigali
-
tuw.event.country
RW
-
tuw.event.presenter
Patrick Indri
-
tuw.event.presenter
Tamara Drucks
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Mathematik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
1010
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
open
-
item.fulltext
with Fulltext
-
item.cerifentitytype
Publications
-
item.mimetype
application/pdf
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.openaccessfulltext
Open Access
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.dept
E194-06 - Forschungsbereich Machine Learning
-
crisitem.author.orcid
0000-0001-5985-9213
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering