<div class="csl-bib-body">
<div class="csl-entry">El-Ebshihy, A., Ningtyas, A. M., Piroi, F., Rauber, A., Romadhony, A., Faraby, S. A., & Sabariah, M. K. (2023). Using Semi-automatic Annotation Platform to Create Corpus for Argumentative Zoning. In O. Alonso, H. Cousijn, G. Silvello, M. Marrero, C. Teixeira Lopes, & S. Marchesin (Eds.), <i>Linking Theory and Practice of Digital Libraries: 27th International Conference on Theory and Practice of Digital Libraries, TPDL 2023, Zadar, Croatia, September 26–29, 2023, Proceedings</i> (pp. 132–145). Springer. https://doi.org/10.1007/978-3-031-43849-3_12</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191634
-
dc.description.abstract
Argumentative Zoning (AZ) is a tool to extract salient information from scientific texts for further Natural Language Processing (NLP) tasks, e.g. scientific articles summarisation. AZ defines the main rhetorical structure in scientific articles. The lack of large AZ annotated benchmark datasets along with the manual annotation complexity of scientific texts form a bottle neck in utilizing AZ for scientific NLP tasks. Aiming to solve this problem, in previous work, we presented an AZ-annotation platform that defines and uses four categories, or zones (Claim, Method, Result, Conclusion) that are used to label sentences in scientific articles. The platform helps to create benchmark datasets to be used with the AZ tool. In this work we look at the usability of the said platform to create/expand datasets for AZ. We present a annotation experiment, composed of two annotation rounds, selected scientific articles from the ACL anthology corpus are annotated using the platform. We compare the user annotations with a ground truth annotation and compute the inter annotation agreement. The annotations obtained in this way are used as training data for various BERT-based models to predict the zone of a given sentence from a scientific article. We compare the trained models with a model trained on a baseline AZ corpus.
en
dc.description.sponsorship
Wirtschaftsagentur Wien Ein Fonds der Stadt Wien
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Annotation
en
dc.subject
Argumentative Zoning
en
dc.subject
Benchmark creation
en
dc.title
Using Semi-automatic Annotation Platform to Create Corpus for Argumentative Zoning
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.editoraffiliation
Universidad de Sevilla, Spain
-
dc.relation.isbn
978-3-031-43849-3
-
dc.description.startpage
132
-
dc.description.endpage
145
-
dc.relation.grantno
2241716
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Linking Theory and Practice of Digital Libraries: 27th International Conference on Theory and Practice of Digital Libraries, TPDL 2023, Zadar, Croatia, September 26–29, 2023, Proceedings
-
tuw.container.volume
14241
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.project.title
Artificial Researcher in Science: Efficient Scientific Publication Mining
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.id
C5
-
tuw.researchTopic.id
C3
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.name
Computer Science Foundations
-
tuw.researchTopic.name
Computational System Design
-
tuw.researchTopic.value
20
-
tuw.researchTopic.value
60
-
tuw.researchTopic.value
20
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publisher.doi
10.1007/978-3-031-43849-3_12
-
dc.description.numberOfPages
14
-
tuw.author.orcid
0000-0001-6644-2360
-
tuw.author.orcid
0000-0002-1045-8352
-
tuw.author.orcid
0000-0001-7584-6439
-
tuw.author.orcid
0000-0002-9272-6225
-
tuw.author.orcid
0000-0002-2930-1689
-
tuw.author.orcid
0000-0002-1731-583X
-
tuw.author.orcid
0000-0002-6385-7971
-
tuw.editor.orcid
0000-0002-9509-4374
-
tuw.event.name
27th International Conference on Theory and Practice of Digital Libraries (TPDL 2023)
en
tuw.event.startdate
26-09-2023
-
tuw.event.enddate
29-09-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Zadar
-
tuw.event.country
HR
-
tuw.event.presenter
El-Ebshihy, Alaa
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E194-01 - Forschungsbereich Software Engineering
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E058-06 - Fachbereich Zentrum für Forschungsdatenmanagement
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.orcid
0000-0001-7584-6439
-
crisitem.author.orcid
0000-0002-9272-6225
-
crisitem.author.orcid
0000-0002-2930-1689
-
crisitem.author.orcid
0000-0002-1731-583X
-
crisitem.author.orcid
0000-0002-6385-7971
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E058 - Forschungs-, Technologie- und Innovationssupport
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering