<div class="csl-bib-body">
<div class="csl-entry">Ranieri, U., Di Cataldo, S., Rescigno, M., Monacelli, L., Gaal, R., Santoro, M., Andriambariarijaona, L., Parisiades, P., De Michele, C., & Bove, L. E. (2023). Observation of the most H₂-dense filled ice under high pressure. <i>Proceedings of the National Academy of Sciences of the United States of America</i>, <i>120</i>(52), Article e2312665120. https://doi.org/10.1073/pnas.2312665120</div>
</div>
-
dc.identifier.issn
0027-8424
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191659
-
dc.description.abstract
Hydrogen hydrates are among the basic constituents of our solar system's outer planets, some of their moons, as well Neptune-like exo-planets. The details of their high-pressure phases and their thermodynamic conditions of formation and stability are fundamental information for establishing the presence of hydrogen hydrates in the interior of those celestial bodies, for example, against the presence of the pure components (water ice and molecular hydrogen). Here, we report a synthesis path and experimental observation, by X-ray diffraction and Raman spectroscopy measurements, of the most H[Formula: see text]-dense phase of hydrogen hydrate so far reported, namely the compound 3 (or C[Formula: see text]). The detailed characterisation of this hydrogen-filled ice, based on the crystal structure of cubic ice I (ice I[Formula: see text]), is performed by comparing the experimental observations with first-principles calculations based on density functional theory and the stochastic self-consistent harmonic approximation. We observe that the extreme (up to 90 GPa and likely beyond) pressure stability of this hydrate phase is due to the close-packed geometry of the hydrogen molecules caged in the ice I[Formula: see text] skeleton.
en
dc.language.iso
en
-
dc.publisher
National Academy of Sciences
-
dc.relation.ispartof
Proceedings of the National Academy of Sciences of the United States of America
-
dc.rights.uri
http://creativecommons.org/licenses/by-nc-nd/4.0/
-
dc.subject
Raman
en
dc.subject
ab initio simulations
en
dc.subject
clathrate hydrates
en
dc.subject
high pressure
en
dc.subject
phase transitions
en
dc.title
Observation of the most H₂-dense filled ice under high pressure
en
dc.type
Article
en
dc.type
Artikel
de
dc.rights.license
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
en
dc.rights.license
Creative Commons Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International
de
dc.identifier.pmid
38109537
-
dc.contributor.affiliation
Sapienza University of Rome, Italy
-
dc.contributor.affiliation
Sapienza University of Rome, Italy
-
dc.contributor.affiliation
École Polytechnique Fédérale de Lausanne, Switzerland
-
dc.contributor.affiliation
École Polytechnique Fédérale de Lausanne, Switzerland
-
dc.contributor.affiliation
Consiglio Nazionale delle Ricerche, Italy
-
dc.contributor.affiliation
Sorbonne Université, France
-
dc.contributor.affiliation
Sorbonne Université, France
-
dc.contributor.affiliation
Sapienza University of Rome, Italy
-
dc.contributor.affiliation
Sapienza University of Rome, Italy
-
dc.rights.holder
PNAS
-
dc.type.category
Original Research Article
-
tuw.container.volume
120
-
tuw.container.issue
52
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
wb.publication.intCoWork
International Co-publication
-
tuw.researchinfrastructure
Vienna Scientific Cluster
-
tuw.researchTopic.id
M2
-
tuw.researchTopic.id
C1
-
tuw.researchTopic.name
Materials Characterization
-
tuw.researchTopic.name
Computational Materials Science
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
dcterms.isPartOf.title
Proceedings of the National Academy of Sciences of the United States of America