<div class="csl-bib-body">
<div class="csl-entry">Taheridehkordi, A., Schlipf, M., Sukurma, Z., Humer, M., Grüneis, A., & Kresse, G. (2023). Phaseless auxiliary field quantum Monte Carlo with projector-augmented wave method for solids. <i>Journal of Chemical Physics</i>, <i>159</i>(4), Article 044109. https://doi.org/10.1063/5.0156657</div>
</div>
-
dc.identifier.issn
0021-9606
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191671
-
dc.description.abstract
We implement the phaseless auxiliary field quantum Monte Carlo method using the plane-wave based projector augmented wave method and explore the accuracy and the feasibility of applying our implementation to solids. We use a singular value decomposition to compress the two-body Hamiltonian and, thus, reduce the computational cost. Consistent correlation energies from the primitive-cell sampling and the corresponding supercell calculations numerically verify our implementation. We calculate the equation of state for diamond and the correlation energies for a range of prototypical solid materials. A down-sampling technique along with natural orbitals accelerates the convergence with respect to the number of orbitals and crystal momentum points. We illustrate the competitiveness of our implementation in accuracy and computational cost for dense crystal momentum point meshes compared to a well-established quantum-chemistry approach, the coupled-cluster ansatz including singles, doubles, and perturbative triple particle-hole excitation operators.
en
dc.language.iso
en
-
dc.publisher
AIP PUBLISHING
-
dc.relation.ispartof
Journal of Chemical Physics
-
dc.subject
Quantum chemistry
en
dc.subject
Coupled-cluster methods
en
dc.subject
Density functional theory
en
dc.subject
Monte Carlo methods
en
dc.subject
Correlation energy
en
dc.subject
Vienna ab initio simulation package
en
dc.subject
Projector augmented wave method
en
dc.subject
Condensed Matter Physics
en
dc.subject
Equations of state
en
dc.subject
Materials Science
en
dc.title
Phaseless auxiliary field quantum Monte Carlo with projector-augmented wave method for solids