<div class="csl-bib-body">
<div class="csl-entry">Ali, S. J., Guizzardi, G., & Bork, D. (2023). Enabling Representation Learning in Ontology-Driven Conceptual Modeling Using Graph Neural Networks. In M. Indulska, I. Reinhartz-Berger, C. Cetina, & O. Pastor (Eds.), <i>Advanced Information Systems Engineering : 35th International Conference, CAiSE 2023, Zaragoza, Spain, June 12–16, 2023, Proceedings</i> (pp. 278–294). Springer. https://doi.org/10.1007/978-3-031-34560-9_17</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191771
-
dc.description.abstract
Conceptual Models (CMs) are essential for information systems engineering since they provide explicit and detailed representations of the subject domains at hand. Ontology-driven conceptual modeling (ODCM) languages provide primitives for articulating these domain notions based on the ontological categories put forth by upper-level (or foundational) ontologies. Many existing CMs have been created using ontologically-neutral languages (e.g., UML, ER). Connecting these models to ontological categories would provide better support for meaning negotiation, semantic interoperability, and complexity management. However, given the sheer size of this legacy base, manual stereotyping is a prohibitive task. This paper addresses this problem by proposing an approach based on Graph Neural Networks towards automating the task of stereotyping UML class diagrams with the meta-classes offered by the ODCM language OntoUML. Since these meta-classes (stereotypes) represent ontological distinctions put forth by a foundational ontology, this task is equivalent to ontological category prediction for these classes. To enable this approach, we propose a strategy for representing CM vector embeddings that preserve the model elements’ structure and ontological categorization. Finally, we present an evaluation that shows convincing learning of OntoUML model node embeddings used for OntoUML stereotype prediction.
en
dc.description.sponsorship
CDP Center for Digital Production G
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Computer Science
-
dc.subject
Graph Neural Networks
en
dc.subject
Ontology-Driven Conceptual models
en
dc.subject
Representation Learning
en
dc.title
Enabling Representation Learning in Ontology-Driven Conceptual Modeling Using Graph Neural Networks
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
University of Twente, Netherlands (the)
-
dc.contributor.editoraffiliation
University of Queensland, Australia
-
dc.contributor.editoraffiliation
University of Haifa, Israel
-
dc.contributor.editoraffiliation
Universidad San Jorge, Spain
-
dc.contributor.editoraffiliation
Universitat Politècnica de València, Spain
-
dc.relation.isbn
978-3-031-34560-9
-
dc.description.startpage
278
-
dc.description.endpage
294
-
dc.relation.grantno
854187
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Advanced Information Systems Engineering : 35th International Conference, CAiSE 2023, Zaragoza, Spain, June 12–16, 2023, Proceedings
-
tuw.container.volume
13901
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.project.title
MFP 4.2 Advanced Analytics for Smart Manufacturing
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-03 - Forschungsbereich Business Informatics
-
tuw.publisher.doi
10.1007/978-3-031-34560-9_17
-
dc.description.numberOfPages
17
-
tuw.author.orcid
0000-0002-0710-8052
-
tuw.author.orcid
0000-0002-3452-553X
-
tuw.author.orcid
0000-0001-8259-2297
-
tuw.editor.orcid
0000-0002-2156-4097
-
tuw.editor.orcid
0000-0002-1419-4905
-
tuw.editor.orcid
0000-0001-8542-5515
-
tuw.event.name
35th International Conference, CAiSE 2023
en
tuw.event.startdate
12-06-2023
-
tuw.event.enddate
16-06-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Zaragoza
-
tuw.event.country
ES
-
tuw.event.institution
Universidad San Jorge
-
tuw.event.presenter
Bork, Dominik
-
tuw.event.track
Multi Track
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
item.languageiso639-1
en
-
item.fulltext
no Fulltext
-
item.grantfulltext
none
-
item.openairetype
conference paper
-
item.cerifentitytype
Publications
-
crisitem.project.funder
CDP Center for Digital Production G
-
crisitem.project.grantno
854187
-
crisitem.author.dept
E194-03 - Forschungsbereich Business Informatics
-
crisitem.author.dept
University of Twente
-
crisitem.author.dept
E194-03 - Forschungsbereich Business Informatics
-
crisitem.author.orcid
0000-0003-1221-0278
-
crisitem.author.orcid
0000-0002-3452-553X
-
crisitem.author.orcid
0000-0001-8259-2297
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering