<div class="csl-bib-body">
<div class="csl-entry">Höflinger, J., Konrad, J., Steindl, C., Bernt, A.-O., Schaerfl, A., & Hofmann, P. (2024). Thermal design of a system for mobile hydrogen powersupply. <i>Applied Thermal Engineering</i>, <i>237</i>, Article 121718. https://doi.org/10.1016/j.applthermaleng.2023.121718</div>
</div>
-
dc.identifier.issn
1359-4311
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191780
-
dc.description.abstract
Ever more stringent emission regulations for vehicles encourage increasing numbers of battery electric vehicles on the roads. A drawback of storing electric energy in a battery is the comparable low energy density, low driving range and the higher propensity to deplete the energy storage before reaching the destination, especially at low ambient temperatures. When the battery is depleted, stranded vehicles can either be towed or recharged with a mobile recharging station. Several technologies of mobile recharging stations already exist, however, most of them use fossil fuels to recharge battery electric vehicles. The proposed novel zero emission solution for mobile charging is a combined high voltage battery and hydrogen fuel cell charging station. Due to the thermal characteristics of the fuel cell and high voltage battery (which allow only comparable low coolant temperatures), the thermal design for this specific application (available heat exchanger area, zero vehicle speed, air flow direction) becomes challenging and is addressed in this work. Experimental methods were used to obtain reliable thermal and electric power measurement data of a 30 kW fuel cell system, which is used in the Mobile Hydrogen Powersupply. Subsequently, simulation methods were applied for the thermal design and optimisation of the coolant circuits and heat exchangers. It is shown that an battery electric vehicle charging power of 22 kW requires a heat exchanger area of 1 m², of which 60 % is used by the fuel cell heat exchanger and the remainder by the battery heat exchanger to achieve steady state operation at the highest possible ambient temperature of 43,6 °C. Furthermore, the simulation showed that when the charging power of 22 kW is solely provided by the high voltage battery, the highest possible ambient temperature is 42 °C. When the charging power is decreased, operation up to the maximum ambient temperatures of 45 °C can be achieved. The results of maximum charging power and limiting ambient temperature give insights for further system improvements, which are: sizing of fuel cell or battery, trailer design and heat exchanger area, operation strategy of the system (power split between high voltage battery and fuel cell) as well as possible dynamic operation scenarios.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.publisher
PERGAMON-ELSEVIER SCIENCE LTD
-
dc.relation.ispartof
Applied Thermal Engineering
-
dc.subject
Hydrogen PEM fuel cell
en
dc.subject
Fuel cell thermal design
en
dc.subject
Hydrogen fuel cell charging station operating strategy
en
dc.subject
Mobile charging station
en
dc.subject
Heat exchanger
en
dc.subject
Fuel cell system thermal model
en
dc.title
Thermal design of a system for mobile hydrogen powersupply
en
dc.type
Article
en
dc.type
Artikel
de
dc.contributor.affiliation
Magna (Austria), Austria
-
dc.contributor.affiliation
Magna (Austria), Austria
-
dc.relation.grantno
876954
-
dc.type.category
Original Research Article
-
tuw.container.volume
237
-
tuw.journal.peerreviewed
true
-
tuw.peerreviewed
true
-
tuw.project.title
MHP Mobile Hydrogen Powersupply
-
tuw.researchTopic.id
E2
-
tuw.researchTopic.id
C6
-
tuw.researchTopic.name
Sustainable and Low Emission Mobility
-
tuw.researchTopic.name
Modeling and Simulation
-
tuw.researchTopic.value
50
-
tuw.researchTopic.value
50
-
dcterms.isPartOf.title
Applied Thermal Engineering
-
tuw.publication.orgunit
E315 - Institut für Fahrzeugantriebe und Automobiltechnik
-
tuw.publication.orgunit
E315-01 - Forschungsbereich Fahrzeugantriebe und Automobiltechnik
-
tuw.publication.orgunit
E315-01-1 - Forschungsgruppe Auto, Energie und Umwelt
-
tuw.publisher.doi
10.1016/j.applthermaleng.2023.121718
-
dc.date.onlinefirst
2023-10-07
-
dc.identifier.articleid
121718
-
dc.identifier.eissn
1873-5606
-
dc.description.numberOfPages
10
-
tuw.author.orcid
0000-0003-2213-4969
-
wb.sci
true
-
wb.sciencebranch
Chemie
-
wb.sciencebranch
Maschinenbau
-
wb.sciencebranch
Elektrotechnik, Elektronik, Informationstechnik
-
wb.sciencebranch.oefos
1040
-
wb.sciencebranch.oefos
2030
-
wb.sciencebranch.oefos
2020
-
wb.sciencebranch.value
10
-
wb.sciencebranch.value
60
-
wb.sciencebranch.value
30
-
item.fulltext
no Fulltext
-
item.openairecristype
http://purl.org/coar/resource_type/c_2df8fbb1
-
item.grantfulltext
restricted
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairetype
research article
-
crisitem.author.dept
E315-01 - Forschungsbereich Fahrzeugantriebe und Automobiltechnik
-
crisitem.author.dept
E315-01-1 - Forschungsgruppe Auto, Energie und Umwelt
-
crisitem.author.dept
E315-01 - Forschungsbereich Fahrzeugantriebe und Automobiltechnik
-
crisitem.author.dept
Magna (Austria)
-
crisitem.author.dept
Magna (Austria)
-
crisitem.author.dept
E315-01 - Forschungsbereich Fahrzeugantriebe und Automobiltechnik
-
crisitem.author.orcid
0000-0002-1489-5525
-
crisitem.author.orcid
0000-0003-2213-4969
-
crisitem.author.parentorg
E315 - Institut für Fahrzeugantriebe und Automobiltechnik
-
crisitem.author.parentorg
E315-01 - Forschungsbereich Fahrzeugantriebe und Automobiltechnik
-
crisitem.author.parentorg
E315 - Institut für Fahrzeugantriebe und Automobiltechnik
-
crisitem.author.parentorg
E315 - Institut für Fahrzeugantriebe und Automobiltechnik
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH