<div class="csl-bib-body">
<div class="csl-entry">Almi, S., Davoli, E., & Friedrich, M. (2023). Non-interpenetration conditions in the passage from nonlinear to linearized Griffith fracture. <i>Journal de Mathématiques Pures et Appliquées</i>, <i>175</i>, 1–36. https://doi.org/10.1016/j.matpur.2023.05.001</div>
</div>
-
dc.identifier.issn
0021-7824
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191816
-
dc.description.abstract
We characterize the passage from nonlinear to linearized Griffith-fracture theories under non-interpenetration constraints. In particular, sequences of deformations satisfying a Ciarlet-Nečas condition in SBV² and for which a convergence of the energies is ensured, are shown to admit asymptotic representations in GSBD² satisfying a suitable contact condition. With an explicit counterexample, we prove that this result fails if convergence of the energies does not hold. We further prove that each limiting displacement satisfying the contact condition can be approximated by an energy-convergent sequence of deformations fulfilling a Ciarlet-Nečas condition. The proof relies on a piecewise Korn-Poincaré inequality in GSBD², on a careful blow-up analysis around jump points, as well as on a refined GSBD²-density result guaranteeing enhanced contact conditions for the approximants.
en
dc.language.iso
en
-
dc.publisher
ELSEVIER
-
dc.relation.ispartof
Journal de Mathématiques Pures et Appliquées
-
dc.subject
Ciarlet-Nečas
en
dc.subject
Contact condition
en
dc.subject
Griffith fracture
en
dc.subject
Linearization
en
dc.subject
Non-interpenetration
en
dc.title
Non-interpenetration conditions in the passage from nonlinear to linearized Griffith fracture