<div class="csl-bib-body">
<div class="csl-entry">Putra, R. V. W., & Shafique, M. (2023). A Design Methodology for Energy-Efficient Embedded Spiking Neural Networks. In S. Pasricha & M. Shafique (Eds.), <i>Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing : Use Cases and Emerging Challenges</i> (pp. 15–35). Springer. https://doi.org/10.1007/978-3-031-39932-9_2</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191917
-
dc.description.abstract
Spiking Neural Networks (SNNs) bear the potential for achieving high accuracy with unsupervised learning settings and ultra-low-energy consumption due to their bio-plausible sparse computations. The unsupervised learning capabilities enable the SNNs to efficiently learn unlabeled data, which is desired for real-world applications, as gathering unlabeled data is cheaper than the labeled one. These advantages make SNNs suitable for solving Machine Learning (ML) tasks on resource- and energy-constrained embedded platforms. However, state-of-the-art SNN models require large memory and high energy consumption to achieve high accuracy, thereby making it challenging to employ SNNs on embedded platforms. In this chapter, we discuss our design methodology to improve the energy efficiency of SNNs for enabling their embedded implementations, while maintaining accuracy through unsupervised learning settings and meeting the memory and energy constraints. The key ideas of our design methodology are reducing the neuron operations, improving the learning quality, quantizing the network parameters, and employing approximate DRAM while considering the memory and energy budgets.
en
dc.language.iso
en
-
dc.subject
spiking neural networks
en
dc.subject
memory optimization
en
dc.subject
energy efficiency
en
dc.subject
learning enhancements
en
dc.subject
approximate dram
en
dc.subject
embedded systems
en
dc.title
A Design Methodology for Energy-Efficient Embedded Spiking Neural Networks
en
dc.type
Book Contribution
en
dc.type
Buchbeitrag
de
dc.contributor.affiliation
TU Wien, Österreich
-
dc.contributor.affiliation
New York University Abu Dhabi, United Arab Emirates (the)
-
dc.relation.isbn
978-3-031-39932-9
-
dc.description.startpage
15
-
dc.description.endpage
35
-
dc.type.category
Edited Volume Contribution
-
tuw.booktitle
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing : Use Cases and Emerging Challenges
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-02 - Forschungsbereich Embedded Computing Systems
-
tuw.publisher.doi
10.1007/978-3-031-39932-9_2
-
dc.description.numberOfPages
21
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.grantfulltext
restricted
-
item.openairetype
book part
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_3248
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems