<div class="csl-bib-body">
<div class="csl-entry">Prabakaran, B. S., & Shafique, M. (2023). An End-to-End Embedded Neural Architecture Search and Model Compression Framework for Healthcare Applications and Use-Cases. In S. Pasricha & M. Shafique (Eds.), <i>Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing : Use Cases and Emerging Challenges</i> (pp. 21–43). Springer. https://doi.org/10.1007/978-3-031-40677-5_2</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191920
-
dc.description.abstract
Deep learning has had a major impact in a wide range of research domains across the world, including healthcare and medicine. From aiding radiologists, by acting as clinical assistants, to analyzing electronic health records, deep learning models have proved to be beneficial in identifying health abnormalities and aiding diagnostics. This chapter discusses a framework that can be used to explore the design space of embedded neural network models for healthcare applications and use-cases, given the user quality requirements, such as accuracy or precision, and hardware constraints of the target execution platform. The models explored by the framework are successful in reducing the hardware overhead of network by a factor of 53 × while achieving a quality loss of <0.2% compared to state of the art.
en
dc.language.iso
en
-
dc.subject
healthcare
en
dc.subject
bio-signal
en
dc.subject
deep learning
en
dc.subject
neural network
en
dc.subject
NAS
en
dc.subject
search
en
dc.subject
model
en
dc.subject
compression
en
dc.subject
exploration
en
dc.subject
framework
en
dc.subject
requirements
en
dc.subject
hardware
en
dc.subject
constraints
en
dc.title
An End-to-End Embedded Neural Architecture Search and Model Compression Framework for Healthcare Applications and Use-Cases
en
dc.type
Book Contribution
en
dc.type
Buchbeitrag
de
dc.contributor.affiliation
New York University Abu Dhabi, United Arab Emirates (the)
-
dc.relation.isbn
978-3-031-40677-5
-
dc.description.startpage
21
-
dc.description.endpage
43
-
dc.type.category
Edited Volume Contribution
-
tuw.booktitle
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing : Use Cases and Emerging Challenges
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-02 - Forschungsbereich Embedded Computing Systems
-
tuw.publisher.doi
10.1007/978-3-031-40677-5_2
-
dc.description.numberOfPages
23
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.languageiso639-1
en
-
item.openairetype
book part
-
item.grantfulltext
restricted
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_3248
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems