<div class="csl-bib-body">
<div class="csl-entry">Putra, R. V. W., Hanif, M. A., & Shafique, M. (2023). An Off-Chip Memory Access Optimization for Embedded Deep Learning Systems. In S. Pasricha & M. Shafique (Eds.), <i>Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing : Hardware Architectures</i> (pp. 175–198). Springer. https://doi.org/10.1007/978-3-031-19568-6_6</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191922
-
dc.description.abstract
Implementations of Deep Neural Networks (DNNs) or Deep Learning (DL) for embedded applications may improve the users’ quality of life, as DL has become a prominent solution for many machine learning (ML) tasks, like personalized healthcare assistance. Such implementations require high energy efficiency since embedded applications usually have tight operational constraints, such as small memory and low operational power/energy. Therefore, specialized hardware accelerators are typically employed to expedite the DL inference. However, previous works have shown that DL accelerators still suffer from high energy consumption from the DRAM-based off-chip memory accesses, thereby hindering the embedded DL implementations. In this chapter, we discuss our design methodology for optimizing the energy consumption of DRAM accesses for the DL accelerators targeting embedded applications. Our design methodology employs an exploration technique to find the data partitioning and scheduling that offer minimum DRAM accesses for the given DNN model and exploits the low latency DRAMs to efficiently perform data accesses that incur minimum DRAM access energy.
en
dc.language.iso
en
-
dc.subject
deep learning
en
dc.subject
hardware accelerator
en
dc.subject
off-chip dram accesses
en
dc.subject
data partitioning and scheduling
en
dc.subject
energy efficiency
en
dc.subject
embedded systems
en
dc.title
An Off-Chip Memory Access Optimization for Embedded Deep Learning Systems
en
dc.type
Book Contribution
en
dc.type
Buchbeitrag
de
dc.contributor.affiliation
New York University Abu Dhabi, United Arab Emirates (the)
-
dc.contributor.affiliation
New York University Abu Dhabi, United Arab Emirates (the)
-
dc.relation.isbn
978-3-031-19568-6
-
dc.description.startpage
175
-
dc.description.endpage
198
-
dc.type.category
Edited Volume Contribution
-
tuw.booktitle
Embedded Machine Learning for Cyber-Physical, IoT, and Edge Computing : Hardware Architectures
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.researchTopic.id
I2
-
tuw.researchTopic.name
Computer Engineering and Software-Intensive Systems
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E191-02 - Forschungsbereich Embedded Computing Systems
-
tuw.publisher.doi
10.1007/978-3-031-19568-6_6
-
dc.description.numberOfPages
24
-
wb.sciencebranch
Informatik
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.value
100
-
item.grantfulltext
restricted
-
item.openairetype
book part
-
item.cerifentitytype
Publications
-
item.languageiso639-1
en
-
item.openairecristype
http://purl.org/coar/resource_type/c_3248
-
item.fulltext
no Fulltext
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems
-
crisitem.author.dept
E191-02 - Forschungsbereich Embedded Computing Systems