<div class="csl-bib-body">
<div class="csl-entry">Glaser, P.-L., Sallinger, E., & Bork, D. (2023). EA ModelSet – A FAIR Dataset for Machine Learning in Enterprise Modeling. In J. P. A. Almeida, M. Kaczmarek-Heß, A. Koschmider, & H. Proper (Eds.), <i>The Practice of Enterprise Modeling : 16th IFIP Working Conference, PoEM 2023, Vienna, Austria, November 28 – December 1, 2023, Proceedings</i> (pp. 19–36). Springer. https://doi.org/10.1007/978-3-031-48583-1_2</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191926
-
dc.description.abstract
The conceptual modeling community and its subdivisions of enterprise modeling are increasingly investigating the potentials of applying artificial intelligence, in particular machine learning (ML), to tasks like model creation, model analysis, and model processing. A prerequisite—and currently a limiting factor for the community—to conduct research involving ML is the scarcity of openly available models of adequate quality and quantity. With the paper at hand, we aim to tackle this limitation by introducing an EA ModelSet, i.e., a curated and FAIR repository of enterprise architecture models that can be used by the community. We report on our efforts in building this data set and elaborate on the possibilities of conducting ML-based modeling research with it. We hope this paper sparks a community effort toward the development of a FAIR, large model set that enables ML research with conceptual models.
en
dc.description.sponsorship
European Commission
-
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Business Information Processing
-
dc.subject
Data set
en
dc.subject
Enterprise architecture
en
dc.subject
Enterprise modeling
en
dc.subject
FAIR
en
dc.subject
Machine learning
en
dc.title
EA ModelSet – A FAIR Dataset for Machine Learning in Enterprise Modeling
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
TU Wien, Österreich
-
dc.relation.isbn
978-3-031-48583-1
-
dc.description.startpage
19
-
dc.description.endpage
36
-
dc.relation.grantno
2021-1-RO01-KA220-HED-000027576
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
The Practice of Enterprise Modeling : 16th IFIP Working Conference, PoEM 2023, Vienna, Austria, November 28 – December 1, 2023, Proceedings
-
tuw.container.volume
497
-
tuw.peerreviewed
true
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.project.title
Digital Platform Enterprise
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-03 - Forschungsbereich Business Informatics
-
tuw.publication.orgunit
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
tuw.publisher.doi
10.1007/978-3-031-48583-1_2
-
dc.description.numberOfPages
18
-
tuw.author.orcid
0000-0002-0710-8052
-
tuw.author.orcid
0000-0001-7441-129X
-
tuw.author.orcid
0000-0001-8259-2297
-
tuw.editor.orcid
0000-0002-1621-2775
-
tuw.editor.orcid
0000-0002-7318-2496
-
tuw.event.name
16th IFIP Working Conference, PoEM 2023
en
tuw.event.startdate
28-11-2023
-
tuw.event.enddate
01-12-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Wien
-
tuw.event.country
AT
-
tuw.event.presenter
Bork, Dominik
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E192-02 - Forschungsbereich Databases and Artificial Intelligence
-
crisitem.author.dept
E194-03 - Forschungsbereich Business Informatics
-
crisitem.author.orcid
0000-0002-0710-8052
-
crisitem.author.orcid
0000-0001-8259-2297
-
crisitem.author.parentorg
E192 - Institut für Logic and Computation
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering