<div class="csl-bib-body">
<div class="csl-entry">Bork, D., Papapetrou, P., & Zdravkovic, J. (2023). Enterprise Modeling for Machine Learning: Case-Based Analysis and Initial Framework Proposal. In S. Nurcan, A. L. Opdahl, H. Mouratidis, & A. Tsohou (Eds.), <i>Research Challenges in Information Science: Information Science and the Connected World : 17th International Conference, RCIS 2023, Corfu, Greece, May 23–26, 2023, Proceedings</i> (pp. 518–525). Springer. https://doi.org/10.1007/978-3-031-33080-3_33</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191928
-
dc.description.abstract
Artificial Intelligence (AI) continuously paves its way into even the most traditional business domains. This particularly applies to data-driven AI, like machine learning (ML). Several data-driven approaches like CRISP-DM and KKD exist that help develop and engineer new ML-enhanced solutions. A new breed of approaches, often called canvas-driven or visual ideation approaches, extend the scope by a perspective on the business value an ML-enhanced solution shall enable. In this paper, we reflect on two recent ML projects. We show that the data-driven and canvas-driven approaches cover only some necessary information for developing and operating ML-enhanced solutions. Consequently, we propose to put ML into an enterprise context for which we sketch a first framework and spark the role enterprise modeling can play.
en
dc.language.iso
en
-
dc.relation.ispartofseries
Lecture Notes in Business Information Processing
-
dc.subject
Artificial intelligence
en
dc.subject
Conceptual modeling
en
dc.subject
Enterprise modeling
en
dc.subject
Machine learning
en
dc.subject
Model-driven engineering
en
dc.title
Enterprise Modeling for Machine Learning: Case-Based Analysis and Initial Framework Proposal
en
dc.type
Inproceedings
en
dc.type
Konferenzbeitrag
de
dc.contributor.affiliation
Stockholm University, Sweden
-
dc.contributor.affiliation
Stockholm University, Sweden
-
dc.relation.isbn
978-3-031-33080-3
-
dc.description.startpage
518
-
dc.description.endpage
525
-
dc.type.category
Full-Paper Contribution
-
tuw.booktitle
Research Challenges in Information Science: Information Science and the Connected World : 17th International Conference, RCIS 2023, Corfu, Greece, May 23–26, 2023, Proceedings
-
tuw.container.volume
476
-
tuw.relation.publisher
Springer
-
tuw.relation.publisherplace
Cham
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-03 - Forschungsbereich Business Informatics
-
tuw.publisher.doi
10.1007/978-3-031-33080-3_33
-
dc.description.numberOfPages
8
-
tuw.author.orcid
0000-0001-8259-2297
-
tuw.author.orcid
0000-0002-4632-4815
-
tuw.author.orcid
0000-0002-0870-0330
-
tuw.editor.orcid
0000-0001-9676-4520
-
tuw.editor.orcid
0000-0002-3141-1385
-
tuw.editor.orcid
0000-0003-2200-3651
-
tuw.event.name
17th International Conference, RCIS 2023
en
tuw.event.startdate
23-05-2023
-
tuw.event.enddate
26-05-2023
-
tuw.event.online
On Site
-
tuw.event.type
Event for scientific audience
-
tuw.event.place
Corfu
-
tuw.event.country
GR
-
tuw.event.presenter
Papapetrou, Panagiotis
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.languageiso639-1
en
-
item.openairetype
conference paper
-
item.grantfulltext
none
-
item.fulltext
no Fulltext
-
item.cerifentitytype
Publications
-
item.openairecristype
http://purl.org/coar/resource_type/c_5794
-
crisitem.author.dept
E194-03 - Forschungsbereich Business Informatics
-
crisitem.author.dept
Stockholm University
-
crisitem.author.dept
Stockholm University
-
crisitem.author.orcid
0000-0001-8259-2297
-
crisitem.author.orcid
0000-0002-4632-4815
-
crisitem.author.orcid
0000-0002-0870-0330
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering