<div class="csl-bib-body">
<div class="csl-entry">Waltersdorfer, L., Breit, A., Ekaputra, F. J., Sabou, M., Ekelhart, A., Iana, A., Paulheim, H., Portisch, J., Revenko, A., ten Teije, A., & van Harmelen, F. (2023). Semantic Web Machine Learning Systems: An Analysis of System Patterns. In P. Hitzler, K. Sarker, & A. Eberhart (Eds.), <i>Compendium of Neurosymbolic Artificial Intelligence</i> (Vol. 369, pp. 77–99). IOS Press. https://doi.org/10.3233/FAIA230136</div>
</div>
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191941
-
dc.description.abstract
In line with the general trend in artificial intelligence research to create intelligent systems that combine learning and symbolic techniques (a.k.a. neuro-symbolic systems), a new sub-area has emerged that focuses on combining machine learning (ML) components with techniques developed by the SemanticWeb (SW) community - SemanticWeb Machine Learning (SWeML for short). Due to the rapid growth of this area and its impact on several communities in the last two decades, there is a need to better understand the space of these SWeML Systems, their characteristics, and trends. Of particular interest are the emerging variations of processing patterns used in these systems in terms of their inputs/outputs and the order of the processing units. While several such neuro-symbolic system patterns were identified previously from a large number of papers, there is currently no insight into their adoption in the field, e.g., about the completeness of the introduced system patterns, or about their usage frequency. To fill that gap, we performed a systematic study and analyzed nearly 500 papers published in the last decade in this area, where we focused on evaluating the type and frequency of such system patterns. Overall we discovered 41 different system patterns, which we categorized into six pattern types. In this chapter we detail these pattern types, exemplify their use in concrete papers and discuss their characteristics in terms of their semantic and machine learning modules.
en
dc.description.sponsorship
FFG - Österr. Forschungsförderungs- gesellschaft mbH
-
dc.language.iso
en
-
dc.subject
neuro-symbolic integration
en
dc.subject
artificial intelligence
en
dc.title
Semantic Web Machine Learning Systems: An Analysis of System Patterns
en
dc.type
Book Contribution
en
dc.type
Buchbeitrag
de
dc.contributor.affiliation
Vrije Universiteit Amsterdam, Netherlands (the)
-
dc.contributor.affiliation
Vrije Universiteit Amsterdam, Netherlands (the)
-
dc.relation.isbn
9781643684079
-
dc.relation.issn
0922-6389
-
dc.description.startpage
77
-
dc.description.endpage
99
-
dc.relation.grantno
877389
-
dc.type.category
Edited Volume Contribution
-
dc.relation.eissn
1879-8314
-
tuw.booktitle
Compendium of Neurosymbolic Artificial Intelligence
-
tuw.container.volume
369
-
tuw.book.ispartofseries
Frontiers in Artificial Intelligence and Applications
-
tuw.relation.publisher
IOS Press
-
tuw.book.chapter
4
-
tuw.project.title
Ontology-Based ARtificial Intelligence in the Environmental Sector
-
tuw.researchTopic.id
I4
-
tuw.researchTopic.name
Information Systems Engineering
-
tuw.researchTopic.value
100
-
tuw.publication.orgunit
E194-04 - Forschungsbereich Data Science
-
tuw.publisher.doi
10.3233/FAIA230136
-
dc.description.numberOfPages
23
-
tuw.author.orcid
0000-0001-9301-8418
-
tuw.author.orcid
0000-0002-7248-7503
-
tuw.author.orcid
0000-0003-4386-8195
-
tuw.author.orcid
0000-0001-5420-0663
-
tuw.author.orcid
0000-0001-6681-3328
-
tuw.author.orcid
0000-0002-9771-8822
-
tuw.author.orcid
0000-0002-7913-0048
-
tuw.editor.orcid
0000-0003-3007-5460
-
wb.sciencebranch
Informatik
-
wb.sciencebranch
Wirtschaftswissenschaften
-
wb.sciencebranch.oefos
1020
-
wb.sciencebranch.oefos
5020
-
wb.sciencebranch.value
90
-
wb.sciencebranch.value
10
-
item.openairecristype
http://purl.org/coar/resource_type/c_3248
-
item.openairetype
book part
-
item.fulltext
no Fulltext
-
item.languageiso639-1
en
-
item.grantfulltext
none
-
item.cerifentitytype
Publications
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-04 - Forschungsbereich Data Science
-
crisitem.author.dept
E194-01 - Forschungsbereich Software Engineering
-
crisitem.author.dept
Vrije Universiteit Amsterdam
-
crisitem.author.dept
Vrije Universiteit Amsterdam
-
crisitem.author.orcid
0000-0003-4569-2496
-
crisitem.author.orcid
0000-0001-9301-8418
-
crisitem.author.orcid
0000-0002-7248-7503
-
crisitem.author.orcid
0000-0003-4386-8195
-
crisitem.author.orcid
0000-0001-5420-0663
-
crisitem.author.orcid
0000-0001-6681-3328
-
crisitem.author.orcid
0000-0002-9771-8822
-
crisitem.author.orcid
0000-0002-7913-0048
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.author.parentorg
E194 - Institut für Information Systems Engineering
-
crisitem.project.funder
FFG - Österr. Forschungsförderungs- gesellschaft mbH