<div class="csl-bib-body">
<div class="csl-entry">Ekstein, J., & Fleischner, H. (2024). The most general structure of graphs with hamiltonian or hamiltonian connected square. <i>Discrete Mathematics</i>, <i>347</i>(1), Article 113702. https://doi.org/10.1016/j.disc.2023.113702</div>
</div>
-
dc.identifier.issn
0012-365X
-
dc.identifier.uri
http://hdl.handle.net/20.500.12708/191944
-
dc.description.abstract
On the basis of recent results on hamiltonicity, [5], and hamiltonian connectedness, [9], in the square of a 2-block, we determine the most general block-cutvertex structure a graph G may have in order to guarantee that G² is hamiltonian, hamiltonian connected, respectively. Such an approach was already developed in [10] for hamiltonian total graphs.
en
dc.language.iso
en
-
dc.publisher
ELSEVIER
-
dc.relation.ispartof
Discrete Mathematics
-
dc.subject
Block-cutvertex graph
en
dc.subject
Hamiltonian cycle
en
dc.subject
Hamiltonian path
en
dc.subject
Square of a graph
en
dc.title
The most general structure of graphs with hamiltonian or hamiltonian connected square